Логарифмическая — функция, обратная потенциированию.
Построив график обратной функции и зеркально отразив его относительно прямой y = x, получим нужный нам график.
Итак, обратная к y=log2(x-2)
функция — это
x=2y+2
Строим график y=2x+2
Его можно получить из графика y=2x
смещением вверх на 2 (либо смещением оси y вниз на 2).
Это — быстровозрастающая функция, равная 1 при x = 0, стремящаяся к 0 на минус бесконечности. Располагается только в верхней полуплоскости (область значений y ≥ 0). Несколько точек для построения: x = 1, y = 2; x = 2, y = 4; x = 4, y = 16; x = -1, y = 0.5; x = -2, y = 0.25.
Отражением относительно прямой y = x получаем искомый график. y=2x +2
и заданной y=log2(x-2)
Объяснени1) y=5x-3
y=3x+1
Координаты пересечения:
5х-3=3х+1
5х-3х=1+3
2х=4
х=2
у=5*2-3=7
у=3*2+1=7
(2;7)
Для построения одна точка известна для обоих графиков, осталось найти еще по одной точке для каждого графика:
у=5х-3 первая точка (2;7)
х=0
у=5*0-3=-3
вторая точка (0;-3)
у=3х+1 первая точка (2;7)
х=0
у=3*0+1=1
вторая точка (0;1)
2) -4х+3=(1/2)х+3
(-4 1/2)х=0
х=0
у=-4*0+3=3
у=(1/2)*0+3=3
координата пересечения (0;3)
Построение:
х=-1
у=-4*(-1)+3=7
(0;3)(-1;7) для у=-4х+3
х=2
у=1/2*2+3=4
(0;3)(2;4) для у=(1/2)х+3
Графики в файле.
е:
x^2+4=(p-2)/3; 3x^2+12=p-2; 3x^2=p-14; x^2=(p-14)/3; Известно что любое число в квадрате больше равно нуля. Ну а чтобы уравнение не имело решений надо чтобы правая сторона была меньше нуля. следовательно p-14<0. p<14. То есть при p принадлежащий от минус бесконечности до 14 не включительно, интервал уравнение не имеет корней