Потому что среди этих 3 чисел всегда есть хотя бы одно четное.
Рассмотрим 3 ситуации
1) если и a, и b - четные числа, то и все произведение, очевидно, четное
2) если a - четное, b - нечетное (аналогично можно доказать, если a, наоборот, нечетное, а b четное), то произведение a и b - четное (произведение четного и нечетного числа есть число четное. Действительно, если a = 2m, b = 2n + 1, то ab = 2m(2n + 1) - делится на 2), а значит произведение четное.
3) если и a, и b - нечетные, то a × b - нечетное число, а (a - b) - четное (фактически это можно доказать так: a = 2m + 1, b = 2n + 1, a - b = 2m + 1 - 2n - 1 = 2(m - n) - делится на 2). Тогда и все произведение - четное.
Как такое решать нужно по учебнику не знаю, но по бытовой логике - смекалке - очевидно, что
равенство верно при х = 0
тогда оно принимает вид 1 = 2*1-1 = 2-1
а вот почему такое решение дает смекалка: 64 = 2*2*2*2*2*2 то есть троек не будет ни в одной степени этого числа, только двойки 27 = 3*3*3 36 = 3*3*2*2 то есть в этих числах не только тройки есть, но и троек в 27 больше на одну, чем в 36, значит в какую бы степень мы не возводили эти числа - в разности никак не получить числа, сомножители которого содержат только двойки. Кроме нулевой степени, когда все эти сомножители не влияют на результат...
Как такое решать нужно по учебнику не знаю, но по бытовой логике - смекалке - очевидно, что
равенство верно при х = 0
тогда оно принимает вид 1 = 2*1-1 = 2-1
а вот почему такое решение дает смекалка: 64 = 2*2*2*2*2*2 то есть троек не будет ни в одной степени этого числа, только двойки 27 = 3*3*3 36 = 3*3*2*2 то есть в этих числах не только тройки есть, но и троек в 27 больше на одну, чем в 36, значит в какую бы степень мы не возводили эти числа - в разности никак не получить числа, сомножители которого содержат только двойки. Кроме нулевой степени, когда все эти сомножители не влияют на результат...
Потому что среди этих 3 чисел всегда есть хотя бы одно четное.
Рассмотрим 3 ситуации
1) если и a, и b - четные числа, то и все произведение, очевидно, четное
2) если a - четное, b - нечетное (аналогично можно доказать, если a, наоборот, нечетное, а b четное), то произведение a и b - четное (произведение четного и нечетного числа есть число четное. Действительно, если a = 2m, b = 2n + 1, то ab = 2m(2n + 1) - делится на 2), а значит произведение четное.
3) если и a, и b - нечетные, то a × b - нечетное число, а (a - b) - четное (фактически это можно доказать так: a = 2m + 1, b = 2n + 1, a - b = 2m + 1 - 2n - 1 = 2(m - n) - делится на 2). Тогда и все произведение - четное.