График функции у=х^2- 3х+2 это парабола ветвями вверх.Находим вершину параболы:Хо = -в/2а = 3/(2*1) = 3/2 = 1,5.Уо = (9/4) - 3*1,5 + 2 = -(1/4) = -0,25.Это минимум функции, максимума у функции нет.Находим точки пересечения с осями.С осью Оу при х = 0, у = 2.С осью Ох при у = 0.Для этого надо решить квадратное уравнение:х^2- 3х+2 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-3)^2-4*1*2=9-4*2=9-8=1;Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√1-(-3))/(2*1)=(1-(-3))/2=(1+3)/2=4/2=2;x_2=(-√1-(-3))/(2*1)=(-1-(-3))/2=(-1+3)/2=2/2=1.
V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-3)^2-4*1*2=9-4*2=9-8=1;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√1-(-3))/(2*1)=(1-(-3))/2=(1+3)/2=4/2=2;x_2=(-√1-(-3))/(2*1)=(-1-(-3))/2=(-1+3)/2=2/2=1.