Лінійні рівняння з двома змінними
Лінійним рівнянням з двома змінними та називається рівняння виду (або виду ).
Приклад :
лінійні рівняння.
Якщо в лівій частині рівняння і , то це рівняння першого степеня з двома змінними.
Приклад:
- лінійне рівняння.
- рівняння першого степеня з двома змінними.
Розв'язком рівняння з двома змінними і називається кожна пара чисел ( ; ), яка перетворює це рівняння на правильну числову рівність.
Приклад:
Для рівняння пара ( 1; 2) є розв'язком, оскільки при і одержуємо - правильна рівність. Пара (0; 1) не є розв'язком заданого рівняння, оскільки при і одержуємо ; - неправильна рівність.
Два рівняння з двома змінними називаються рівносильними, якщо вони мають одні й ті самі розв'язки або обидва рівняння не мають розв'язків.
Приклад:
Рівняння і - рівносильні.
Властивості рівносильних рівнянь з двома змінними
Якщо обидві частини рівняння з двома змінними помножити або поділити на одне і те саме число, яке не дорівнює нулю, то одержимо рівняння , рівносильне даному.
Приклад :
Рівняння і - рівносильні (друге можна одержати з першого множенням на 2).
Якщо будь-який член рівняння з двома змінними перенести з однієї частини рівняння в іншу з протилежним знаком, то одержимо рівняння, рівносильне даному.
Приклад:
Рівняння і - рівносильні.
Графік лінійного рівняння з двома змінними
На координатній площині графіком лінійного рівняння називається множина точок, координати яких задовольняють даному рівнянню.
Якщо чи , графіком заданого рівняння є пряма, і для її побудови досить отримати будь - які дві точки цієї прямої.
Приклад :
Графіком рівняння є пряма
Якщо і , графіком заданого рівняння є пряма, паралельна осі
Приклад :
Графіком рівняння є пряма
Якщо і , графіком заданого рівняння є пряма, паралельна осі
Приклад :
Графіком рівняння є пряма .
так как каждое последующее число занимает количество мест, равное этому числу, то общее число мест равно сумме ряда (арифметической прогрессии)
S = 1+2+3+4+5+ ... +n=2010
(1+n)n/2=2010
n²+n-4020=0
n=62,9... > 62 (второй корень отрицательный и не подходит)
62 < 62,9... < 63
значит
n=63
ПРИМЕЧАНИЕ:
заметим, что только часть из 63 чисел равных 63 использованы в задаче, т.к.
S(62)=1953 ( если использованы все 62 числа, равные 62)
(последовательность занимала бы 1953 места)
S(63)=2016 ( если бы были использованы все 63 числа, равные 63)
(последовательность занимала бы 2016 мест)
смотрите по прикреплённому фото .