1) V ( -X ^2 + 2X + 3)
2) (X-2)*(15-X) = 15X - X^2 - 30 + 2X = -X^2 + 17X - 30
-X^2 + 2X + 3
D = 4 - 4*(-1)*3 = 4 + 12 = 16
V 16 = 4
X1 = - 2 + 4 \ - 2 = 2\-2=-1
X2 = - 2 - 4 \ -2 = -6\-2=3
(X+1)*(X-3)
V (X+1)*(X-3)
(X-2)*(15-X)
В условии не хватает значения: либо равно нулю, либо больше (или меньше) нуля.
Теперь надо вышенаписанное (x-1); (x-3); (X-2); (15-X) приравнивать к нулю (или больше или меньше). И только так можно найти (до конца) эту область определения
1) - логарифмируемое выражение должно быть положительным,
2) - знаменатель дроби не должен быть равен 0.
1) Чтобы логарифмируемое выражение было положительным, надо, чтобы числитель и знаменатель были одновременно или положительными или отрицательными:
2х + 1 >0 x > -1/2
x - 1 > 0 x > 1 Первое решение х > 1
2х + 1 <0 x < -1/2
x - 1< 0 x < 1 Второе решение х < - 1/2
2) Чтобы знаменатель дроби не был равен 0: х - 1 ≠ 0 х ≠ 1.
ответ: -1/2 > x > 1