task/29410264 Упростите выражения
а) (p-2a)(p+2a)-(p-a)(p²+pa+a² )
б) 3•(2a- 5b)² - 12(a-b)²
а) (p-2a)(p+2a)-(p-a)(p²+pa+a² ) =p²-(2a)² -(p³ - a³) = p²- 4a² - p³ + a³ .
б) 3•(2a- 5b)² - 12(a-b)² =3(4a² -20ab +25b²) - 12(a²-2ab+b²) = 12a² - 60ab +75b² - 12a² +24ab - 12b² = 63b² - 36ab .
или
3•(2a- 5b)² - 12(a-b)² =3•( (2a- 5b)² - 4*(a-b)² ) = 3•( (2a- 5b)² - (2a-2b)² ) = 3(2a - 5b - 2a +2b)(2a- 5b+2a-2b ) = -9b(4a- 7b ) = 63b² - 36ab .
|5x-3|+|3x-5|=9x-10
Из определения модуля следует, что |a|>=0, |a|+|b|>=0
Отсюда:
9x-10>=0 <=> x>=10/9$ при x<10/9 корней нет
Найдем иные границы интервалов раскрытия модулей:
5x-3=0 <=> х=3/5 < 10/9
3x-5=0 <=> x=5/3>10/9/
3/5 10/9 5/3
|||>x
КОРНЕЙ НЕТ!
Отсюда: при x<10/9 - корней нет
При
10/9<= х <=5/3 имеем:
5x-3+(-3x+5)=9x-10
2x+2=9x-10
x=12/7
сравним 12/7 и 5/3:
12/7=36/21 > 5/3=35/21 => корень не входит интервал
При 10/9<= х <=5/3 корней нет
При x>=5/3
5x-3+3x-5=9x-10
8x-8=9x-10
- x = - 2
x=2
x=2 > 5/3, этот корень в исследуемый интервал входит.
ответ х=2