Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная
1. Сначала требовалось 12 автомашин
2. Фактически использовали 15 автомашин
3. На каждой автомашине планировалось перевозить 5 тонн
Объяснение:
пусть
x - изначальная грузоподъемность одной машины
(т.е. то, сколько тонн груза планировались перевозить на каждой машине изначально)
(x-1) - фактическая грузоподъемность одной машины
(т.е. то, сколько тонн груза фактически перевозили на каждой машине)
y - количество машин, которое требовалось изначально
(y+3) - количество машин, которое потребовалось фактически
по условию: надо перевести 60 тонн,
грузоподъемность × количество машин = масса перевозимого груза
составим систему:
x × y = 60 - изначально
(x-1)×(y+3) = 60 - фактически
решаем систему:
из первого уравнения: x = 60/y
(по условию: y не может быть равен 0)
подставим во второе уравнение:
(60/y - 1) × (y+3) = 60
60 + 180/y - y - 3 = 60
180/y - y - 3 =0
-y^2 -3 × y + 180 = 0
y^2 + 3 × y - 180 = 0
решаем квадратное уравнение:
корни: 12, -15
-15 - отрицательная величина, не подходит по условию
значит
y = 12
тогда
x = 60/12 = 5