Thank
Объяснение:
Осуждённый проглотил выбранную им бумажку. Чтобы установить, какой жребий ему выпал, судьи заглянули в оставшуюся бумажку. На ней было написано: «смерть». Это доказывало, что ему повезло, он вытащил бумажку, на которой было написано: «жизнь».
Как в случае, о котором рассказывает загадка, при доказательстве возможны только два случая: можно… или нельзя… Если удастся убедится, что первое невозможно (на бумажке, которая досталась судьям, написано: «смерть»), то сразу можно сделать вывод, что справедлива вторая возможность (на второй бумажке написано: «жизнь»).
task/29635078 Дан параллелограмм ABCD , F – точка пересечения диагоналей , О – произвольная точка пространства. Доказать: 1) (OA) ⃗+(OC) ⃗=(OB) ⃗+ (OD) ⃗ ; 2) (OF) ⃗=1/4((OA) ⃗+(OB) ⃗+(OC) ⃗+(OD) ⃗) .
Решение : Если векторы исходят из одной точки , то вектор суммы исходит из общей начальной точки векторов и является диагональю параллелограмма, сторонами которого являются данные векторы . * * * ( Сумма векторов , правило параллелограмма ) * * *
1) (OA) ⃗+ (OC) ⃗ =2*(OF) ⃗ и (OB) ⃗+(OD) ⃗ = 2*(OF) ⃗
значит (OA) ⃗+ (OC) ⃗ = (OB) ⃗+(OD) ⃗
2) (1/4) * [ (OA) ⃗+(OB) ⃗+ (OC) ⃗+(OD) ⃗] =
(1/4) * [ (OA) ⃗+ (OC) ⃗+(OB) ⃗+(OD) ⃗] =
(1/4) * [ 2*(OF) ⃗+2*(OF) ] =
(1/4) * 4*(OF) ⃗ = (OF) ⃗ .
Из прямоугольного треугольника АВК
sin∠A=BK/AB ⇒ AB=BK/sin∠A=12:(0,4√5)=6√5
По теореме Пифагора
АК²=АВ²-ВК²=(6√5)²-12²=180-144=36
АК=6
КС=6
АС=АК+КС=6+6=12