1. рассмотрим производную у'=3x^2+36x. 2. Если в какой-либо точки производная =0, то сама функция в этой точке будет иметь максимум или минимум. Наша производная может быть 0 в двух точках:х=0 и х= - 12. 3.Если построить график производной, то это будет парабола, с нулями в точках -12 и 0, ветви которой будут направленны вверх, т.к. перед х^2 стоит 3- положительное число. => Наша функция будет убывать на промежутке, где производная отрицательна (-12, 0), и возрастать там где она положительна(-беск;-12) и (0;+ беск). Т.е. свой минимум она будет иметь как раз в точке х=0. ( потому что до этого она убывала, а потом стала возрастать). Точка х= -12- нам не нужна, т.к. она не входит в заданный промежуток (-3;3). А вот х=0- нам как раз пригодится. Т.к. она как раз лежит в промежутке от -3 до 3. Следовательно нам нужно найти значение функции у в точке х=0. Подставляем ноль вместо х в выражение у=х^3+18x^2+17 и находим у: у=0^3+18*0^2+17= 0+0+17=17 ответ: 17
Понятно, что в больших коробках и в маленьких коробках количество книг одинаковое и равно половине от общего количества книг (примем за Х). Неодинаково количество больших и маленьких коробок. Пусть больших коробок было А штук, а меленьких В штук. Тогда 24*А - количество книг в больших коробках, 15*В - количество книг в маленьких коробках. И там, и там половина от общего количества книг (по условию). То есть, 24*А = 15*В = Х/2. Мы знаем, что больших коробок на 3 меньше, значит А - 3 = В. Подставим это значение В в наше первое уравнение: 24А = 15(А-3) 24А = 15А-45 А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120. Следовательно, всего книг 120 * 2 = 240. ответ: 240 книг.
Смотри фото
Объяснение: