https://www.kontrolnaya-rabota.ru/s/equal-many/system-any/?ef-TOTAL_FORMS=52&ef-INITIAL_FORMS=2&ef-MIN_NUM_FORMS=0&ef-MAX_NUM_FORMS=1000&ef-0-s=11x%5E2-7x-10%3Dx%5E2%2B9x-2&ef-1-s=&ef-2-s=&ef-3-s=&ef-4-s=&ef-5-s=&ef-6-s=&ef-7-s=&ef-8-s=&ef-9-s=&ef-10-s=&ef-11-s=&ef-12-s=&ef-13-s=&ef-14-s=&ef-15-s=&ef-16-s=&ef-17-s=&ef-18-s=&ef-19-s=&ef-20-s=&ef-21-s=&ef-22-s=&ef-23-s=&ef-24-s=&ef-25-s=&ef-26-s=&ef-27-s=&ef-28-s=&ef-29-s=&ef-30-s=&ef-31-s=&ef-32-s=&ef-33-s=&ef-34-s=&ef-35-s=&ef-36-s=&ef-37-s=&ef-38-s=&ef-39-s=&ef-40-s=&ef-41-s=&ef-42-s=&ef-43-s=&ef-44-s=&ef-45-s=&ef-46-s=&ef-47-s=&ef-48-s=&ef-49-s=&ef-50-s=&ef-51-s=
Объяснение:ЭТО ССЫЛКА НА РЕШЕНИЕ
УДАЧИ
1. Найти наибольшее и наименьшее значение функции
на промежутке [-4; 1]
Точка разрыва x=9 в заданный интервал не входит.
Первая производная для нахождения точек экстремумов.
Обе точки экстремумов не попадают в интервал x∈[-4; 1]
Значения функции на концах интервала
ответ: наименьшее значение функции ;
наибольшее значение функции F(1) = 0,75
-----------------------------------------------------------------------------
2. Записать уравнение касательной к графику
функции F(x)=x⁴-2x в точке x₀=-1
Уравнение касательной имеет вид y = F(x₀) + F’(x₀)·(x - x₀)
F(-1) = x⁴-2x = (-1)⁴ - 2(-1) = 1+2 = 3
F'(-1) = (x⁴-2x)' = 4x³ - 2 = 4(-1)³ - 2 = -6
y = F(x₀) + F’(x₀)·(x - x₀) = 3 - 6 (x + 1) = 3 - 6x -6 = -6x - 3
ответ: уравнение касательной y = -6x - 3
---------------------------------------------------------------------------
3. Исследовать функцию и построить ее график F(x)=x³-3x²
1) Область определения D(F) = R
2) Область значений E(F) = R
3) Нули функции
F(x)=x³-3x² = 0; x²(x - 3) = 0; x₁ = 0; x₂ = 3
4) Пересечение с осью OY
x = 0; F(0) = 0³-3·0² = 0
5) Экстремумы функции
F'(x) = 0; (x³-3x²)' = 0; 3x² - 6x = 0; 3x(x - 2) = 0;
x₁ = 0; F(0) = 0; F"(0) = 6x - 6 = -6 ⇒ локальный максимум.
x₂ = 2; F(2) = 2³-3·2² = -4; F"(2) = 6x - 6 = 6 ⇒ локальный минимум.
6) Монотонность функции.
Интервалы знакопостоянства первой
производной F'(x) = 3x(x - 2)
++++++++ (0) ------------- (2) +++++++++> x
/ \ /
x ∈ (-∞; 0)∪(2; +∞) - функция возрастает
x ∈ (0;2) - функция убывает
7) Функция не периодическая, общего вида (не является чётной, не является нечётной).
8) Дополнительные точки для построения
x₃ = -1; y₃ = -4; x₄ = 1; y₄ = -2
9) График функции в приложении
Объяснение:
Вот:
ОДЗ: х не=4; х не=7.
(x-2)(x-5)=7/(x-4)(x-7)
(x-2)(x-7)(x-5)(x-4)=7
(x^2-9x+14)(x^2-9x+20)=7
Замена x^2-9x+14=y
y(y+6)=7
y1=1; y2=-7
Обратная замена:
1) x^2-9x+14=1
2) x^2-9x+14=-7
Эти два квадратных уравнения реши самостоятельно. Успехов!