Строишь график функции y = 3x² и сдвигаешь его на 2,5 единичных отрезка влево. (Ты вообще можешь сразу провести пунктиром линию x = 2,5 (это вертикальная линия, которая пересекается с осью Оx в точке 2,5) и строить свой график, как будто твой пунктир - это ось Оy). График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12). Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).
Вспоминаем формулу сокращенного умножения:
(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Получаем:
n^3 - 3n^2m + 3nm^2 - m^3
2) (-2+k)^3 = (k-2)^3
Вспоминаем формулу сокращенного умножения:
(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Получаем:
k^3 - 3k^2 * 2 + 3k * 2^2 - 2^3 = k^3 - 6k^2 + 12k - 8
3) (-x-y)^3 = -(x+y)^3
Вспоминаем формулу сокращенного умножения:
(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
Получаем:
(-x-y)^3 = -((x+y)^3) = -(x^3 + 3x^2y + 3xy^2 + y^3) =
= -x^3 - 3x^2y - 3xy^2 - y^3
4) (-0.5+p)^3 = (p-0.5)^3
Вспоминаем формулу сокращенного умножения:
(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Получаем:
p^3 - 0,5p^2 + 0,25p - 0,125