х|x| = x
При х ≥ 0 уравнение имеет вид: х*x = x
х² = x
х² - x = 0
х(х -1) = 0
х = 0 или х = 1
(т.е при х ≥ 0 уравнение имеет два корня)
При х < 0 уравнение имеет вид: х*(-x) = x
- х² = x
- х² - x = 0
- х(х +1) = 0
х = 0 или х = - 1
(т.е при х < 0 уравнение тоже имеет два корня)
Имеем:
при х ≥ 0 при х < 0
х = 0 или х = 1 или х = 0 или х = - 1
=> корни: х = 0 или х = 1 или х = - 1
ответ: 3.
Объяснение:
1) при x₂>x₁
x₂-1>x₁-1
1/(x₂-1) <1/(x₁-1) так как из двух дробей больше та у которой меньше знаменатель
умножим предыдущее неравенство на (-1), при умножении на отрицательное число знак неравенства меняется на противоположный
-1/(x₂-1) >-1/(x₁-1) ⇒ y₂>y₁ ⇒ функция возрастает на всей области определения в том числе и на промежутке [3;4]
2) решение через производную
y'=-2((x-1)⁻¹)'=-2(-1)/(x-1)²=2/(x-1)²>0 на всей области определения в том числе и на промежутке [3;4]
⇒ y возрастает на всей области определения