Объяснение:
1) Для того, чтобы найти точку пересечения двух графиков у=f(x) и y=g(x), нужно решить уравнение f(x)=g(x). Этим самым мы найдем абциссу точки пересечения.Далее, подставив эту абциссу в одну из формул найдем ординату
-8x-5 =3
-8х=8
х=-1- абциса точки пересечения
у=3 либо у=-8×(-1)-5=3
Итак (-1;3) - точка пересечения данных графиков
2) а) Для того чтобы найти точку пересечения функции у=f(x) с осью ОХ надо решить уравнение f(x)=0
б) Для того чтобы найти точку пересечения функции у=f(x) с осью ОУ надо вычислить f(0).
В нашем случае
y=-3x+42
-3x+42=0
-3х=-42
х=14 - точка пересечения с осью ОХ
у(0)=-3×0+42=42 - точка пересечения с осью ОУ
Аналогично поступим со второй функцией
y=5x-5
5x-5=0
5х=5
х=1 - точка пересечения с осью ОХ
у(0)=5×0-5=-5 - точка пересечения с осью ОУ
3) У паралельных прямых коэфициенты К- равны
Найдем в
у=0,4х+в так прямая проходит через точку ( -5 ; 2 ),то
0,4×(-5)+в=2
-2+в=2
в=4, тогда искомая функция имеет вид: у=0,4х+4
sin2x - (1-sin²x) =0 ;
2sinxcosx -cos²x =0 ;
cosx(2sinx -cosx) =0 ;
[cosx =0 ;2sinx-cosx =0.⇔ [cosx =0 ;sinx=(1/2)cosx.⇔[cosx =0 ;tqx=1/2.
[ x=π/2 +πn ; x =arctq1/2+πn , n∈Z.
2) ;
ctq2x*cos²x - ctq2x*sin²x =0 ;
ctq2x*(cos²x - sin²x) =0 ;
ctq2x*cos2x =0 ;
sin2x =0 * * *cos2x = ± 1 ≠0→ ОДЗ * * *
2x =πn , n∈Z ;
x =(π/2)*n , n∈Z .
3) ;
3sin²x/2 -2sinx/2 =0 ;
3sinx/2 (sinx/2 -2/3) =0 ;
[sinx/2 =0 ; sinx/2 =2/3 .⇒[x/2 =πn ; x/2= arcsin(2/3) +πn ,n∈Z.⇔
[x =2πn ; x= 2arcsin(2/3) +2πn ,n∈Z.
4) ;
* *cos2α =cos²α -sin²α =cos²α -(1-sin²α)=2cos²α -1⇒1+cos2α=2cos²α * *
cos3x = 1+cos2*(3x) ; * * * α = 3x * * *
cos3x = 2cos²3x ;
2cos²3x -cos3x =0 ;
2cos3x(cos3x -1/2) =0 ;
[cos3x =0 ; cos3x =1/2 ⇒[3x=π/2+πn ; 3x= ±π/3+2πn ,n∈Z.⇔
[x=π/6+πn/3 ; x= ±π/9+(2π/3)*n ,n∈Z.