Значения на концах отрезка:
y(-3) = (9 + 8)/(-3-1) = -17/4 = -4,25
y(0) = (0 + 8)/(0 - 1) = -8/1 = -8
Точка разрыва x = 1 не входит в промежуток [-3; 0] и нас не интересует.
Экстремум
y'= \frac{2x(x-1) - (x^2+8)*1}{(x-1)^2} = \frac{2x^2-2x-x^2-8}{(x-1)^2} =\frac{x^2-2x-8}{(x-1)^2} = 0y
′
=
(x−1)
2
2x(x−1)−(x
2
+8)∗1
=
(x−1)
2
2x
2
−2x−x
2
−8
=
(x−1)
2
x
2
−2x−8
=0
x^2 - 2x - 8 = (x - 4)(x + 2) = 0
x1 = -2; y(-2)= (4 + 8)/(-2 - 1) = 12/(-3) = -4
x2 = 4 - не входит в промежуток [-3; 0]
ответ: y(-2) = -4 - наибольшее, y(0) = -8 - наименьшее.
x-x1 y-y1
= x1=-1 x2=3 y1=8 y2=-4
x2-x1 y2-y1
x-(-1) y-8 x+1 y-8 x+1 y-8
= ⇔ = или =
3-(-1) -4-8 4 -12 1 -3
-3(x+1)=y-8 или y=-3x+5
y=kx+b
A(-1;8) ∈ y=kx+b ⇔ 8=k(-1)+b -k+b=8
и B(3;-4)∈ y=kx+b ⇔-4=k(3)+b ⇔ 3k+b=-4 ⇔4k=-12 k=-3
b=8+k=5
y=-3x+5
проверка
A(-1;8) и B(3;-4)∈ y=kx+b y=-3x+5
A(-1;8) 8=-3(-1)+5 верно
B(3;-4) -4=-3(3)+5 верно