. Чтобы извлечь его из под корня, нужно извлечь из под корня
, а затем
. Если степень четная, то уменьшаем ее в 2 раза, если нечетная, то из под корня полностью число в этой степень извлечь нельзя. 
![\sqrt[n]{a^m} = a^{\frac{m}{n}}](/tpl/images/0561/7515/fd5e1.png)
![a^{\frac{1}{2}} = \sqrt[2]{a^1} \\ a^{\frac{4}{2}} = \sqrt[2]{a^4} \\ a ^ {\frac{3}{6}} = \sqrt[6]{a^3} \\](/tpl/images/0561/7515/b4cce.png)
![\sqrt[2]{(10^6)^1}](/tpl/images/0561/7515/7734e.png)
.
возведено в 1 степень, то есть
, степень корня — 2 (
). Перейдем от записи в виде корня к записи в виде степени:![\sqrt[2]{(10^6)^1} = (10^6)^{\frac{1}{2}}](/tpl/images/0561/7515/3f459.png)
, тогда:
3x-y=-5
-5x+2y=1
Выражаем у из первого уравнения и ставим во второе
у=3х+5
-5х+2(3х+5)=1
Раскрываем скобки
у=3х+5
-5х+6х+10=1
Приводим подобные
у=3х+5
х+10=1
Отсюда
у=3(-9)+5
х=1-10
Или решением неравенства будет пара
у=-22
х=-9
Проверка
3(-9)-(-22)=-5
-5(-9)+2(-22)=1
Произведем вычисления
-27+22=-5
45-44=1
или
5=-5
1=1
Т. к. получили верное равенство, значит, решили правильно
ответ: х=-9 и у=-22 или (-9;-22)
Удачи!