y=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Подробнее - на -
Объяснение:
S = ав = 180
Р = 2а + 2в = 54 (т.к. периметр - это сумма длин ВСЕХ сторон).
Таким образом, получаем систему:
ав = 180 ав = 180 (27 - в) * в = 180 (*)
2а + 2в = 54 а + в = 27 (сократили на 2) а = 27 - в
Решаем уравнение (*) отдельно:
(27 - в) * в = 180
-в² + 27в - 180 = 0 (умножаем на -1, чтобы поменять знаки)
в² - 27в + 180 = 0
По теореме Виета:
в₁ * в₂ = 180 в₁ = 12 (см)
в₁ + в₂ = 27 в₂ = 15 (см)
У нас получилось два решения:
а₁ = 27 - в₁ = 27 - 12 = 15 (см)
а₂ = 27 - в₂ = 27 - 15 = 12 (см)
ответ : а₁ = 15 см, в₁ = 12 см либо а₂ = 12 см, в₂ = 15 см.