Пусть за (х) дней одна работу может выполнить Катя за (у) дней одна работу может выполнить Алиса, x < y тогда за 1 день Катя может выполнить (1/х) часть работы, за 1 день Алиса может выполнить (1/у) часть работы. (1/х) + (1/у) = 1\6 0.6*х + 0.4*у = 12 система (х+у) / (ху) = 1/6 6х + 4у = 120
6х + 6у = ху 6х = 120 - 4у
6*(120 - 4у + 6у) = (120 - 4у)*у 6*120 + 12у = 120у - 4у² у² - 27у + 180 = 0 по т.Виета корни 12 и 15 у = 12, тогда х = (120 - 48)/6 = 20-8 = 12 у = 15, тогда х = (120 - 60)/6 = 20-10 = 10 ответ: за 10 дней может напечатать курсовую Катя, т.к. она печатает быстрее Алисы.
Допустим, автобус выходит из А в 6 утра и приходит в В в 10. Следующий выходит в 7, потом в 8, в 9, в 10, в 11, в 12, в 13. Придя в 10 утра в В, он разворачивается и едет обратно. В А он возвращается в 14. Автобус, который вышел из А в 7, к 10 часам проедет 3/4 дороги. А в 10:30 он проедет 3/4 + 1/8 = 7/8 и встретит первый автобус, который в 10 вышел из В. Автобус, который вышел в 8, к 10 часам проедет 1/2 дороги. А в 10:30 он проедет 1/2 + 1/8 = 5/8 дороги. И ровно в 11 он проедет 3/4 дороги и встретит первый автобус. И дальше все точно также. Таким образом, если я увидел встречный автобус, то следующий я увижу через полчаса.
за (у) дней одна работу может выполнить Алиса, x < y
тогда за 1 день Катя может выполнить (1/х) часть работы,
за 1 день Алиса может выполнить (1/у) часть работы.
(1/х) + (1/у) = 1\6
0.6*х + 0.4*у = 12
система
(х+у) / (ху) = 1/6
6х + 4у = 120
6х + 6у = ху
6х = 120 - 4у
6*(120 - 4у + 6у) = (120 - 4у)*у
6*120 + 12у = 120у - 4у²
у² - 27у + 180 = 0
по т.Виета корни 12 и 15
у = 12, тогда х = (120 - 48)/6 = 20-8 = 12
у = 15, тогда х = (120 - 60)/6 = 20-10 = 10
ответ: за 10 дней может напечатать курсовую Катя, т.к. она печатает быстрее Алисы.