an=3n-8меньше 0
3n-8меньше 0
nменьше 8/3
nменьше2 целых 2/3 следовательно
n=2
а2=3 х 2 - 8
а2 = -2 2
.найдите двенадцатый член дано а1=26; а2=23 следовательно d=-3(23-26)
а12= a1+(n-1) d
a12=26+11d
a12=26-33
a12=-7
3. какое число является членом арифметической пр.
a1=4 a4=85
d=(an-am)\n-m=(a4-a1)\4-1=(85-4)\3=27
a2=4+27=31
a3=31+27=58
4.вычислите an=15 -3n
здесь а1=15
по формуле s=(a1+an)\2 х n=(15+15-3 х19)\2 и всё умножить на 19= решаем и находим s19=256,5
как то так
Объяснение:
1) 5/(x²+2x+1) -2/(1-x²)=1/(x-1)
5/(x+1)² +2/((x-1)(x+1)) -1/(x-1)=0
(5(x-1)+2(x+1)-(x+1)²)/((x-1)(x²+2x+1))=0
x-1≠0; x₁≠1
x²+2x+1≠0
Допустим:
x²+2x+1=0; D=4-4=0
x₂=-2/2=-1⇒x₂≠-1
5(x-1)+2(x+1)-(x+1)²=0
5x-5+2x+2-x²-2x-1=0
-x²+5x-4=0
x²-5x+4=0; D=25-16=9
x₃=(5-3)/2=2/2=1 - этот корень не подойдет для этого уравнения, так как x₁≠1.
x₄=(5+3)/2=8/2=4
ответ: 4.
2) 3/(x²-6x+9) +6/(9-x²)=1/(x+3)
3/(x-3)² -6/((x-3)(x+3)) -1/(x+3)=0
(3(x+3)-6(x-3)-(x-3)²)/((x+3)(x²-6x+9))=0
x+3≠0; x₁≠-3
x²-6x+9≠0
Допустим:
x²-6x+9=0; D=36-36=0
x₂=6/2=3⇒x₂≠3
3(x+3)-6(x-3)-(x-3)²=0
3x+9-6x+18-x²+6x-9=0
-x²+3x+18=0
x²-3x-18=0; D=9+72=81
x₃=(3-9)/2=-6/2=-3 - этот корень не подойдет для этого уравнения, так как x₁≠-3.
x₄=(3+9)/2=12/2=6
ответ: 6.