№1 (а)
ответ: -\frac{4}{3}" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=x%20%3E%20-%5Cfrac%7B4%7D%7B3%7D" title="x > -\frac{4}{3}">
№1 (б)
№2 (а)
-4} \atop {x\leq -2.5}} \right." class="latex-formula" id="TexFormula6" src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%3E-4%7D%20%5Catop%20%7Bx%5Cleq%20-2.5%7D%7D%20%5Cright." title="\left \{ {{x>-4} \atop {x\leq -2.5}} \right.">
№2(б)
\frac{36}{5}" class="latex-formula" id="TexFormula10" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">
ответ: \frac{36}{5}" class="latex-formula" id="TexFormula12" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">
S=-4(2-√2)
Объяснение:
Dano:-4V2,4,-2V2
Obliczamy d d=4/-4V2=-V2/2 (-1<q<1)
* пользуемся формулой: S=a1/(1-q), который настоящий, если: -1< q<1
a1=-4√2
q=-√2/2
S=a1/(1-q)
S=-4√2/(1-(-√2/2)) = -4√2/(2+√2)/2) =-4√2*2/(2+√2)= -8√2/(2+√2)= =[-8√2*(2-√2)]/[(2+√2)(2-√2)=
=(-16+8√2)/(4-2)=-8(2-√2) /2=-4(2-√2)
S=-4(2-√2)