Х+у=10 х³ + у³ = (х+у)(х²+ху+у²) = 10(х²+ху+у²) чтобы сумма кубов была наименьшей, нужно найти минимум для выражения в скобках (т.к. 10 уже не изменится))) х²+ху+у² = х²+2ху+у² - ху = (х+у)² - ху = 100 - ху = 100 - (10-у)у = = 100 - 10у + у² это квадратный трехчлен (график -- парабола, ветви вверх))), своего минимума достигает в вершине параболы... абсцисса вершины: у₀ = -b / (2a) = 10/2 = 5 тогда х = 10-у = 5 другой вариант рассуждений: х = 10-у х³ + у³ = (10-у)³ + у³ = 10³ - 300у + 30у² - у³ + у³ = 30у² - 300у + 1000 вновь парабола, ветви вверх, минимум в вершине для у₀ = -b / (2a) = 300/(2*30) = 10/2 = 5 тогда х = 5 тоже))
1) x∈R 2) y(-x)=2(-x)⁴-4x²+3=y(x) ф-я четная, можно строить только при х больше 0 и отразить график симметрично в оси у 3) пересечение с осью х у=0 2x⁴-4x²+3=0 сделаем замену x²=z 2z²-4z+3=0 D=16-24<0 корней нет, график лежит выше оси х, х=0 у=3 пересечение с осью у 4)y'=8x³-8x=8x(x-1)(x+1) экстремумы при x=0,1, -1
-1 0 1→x - + - + убывает при x∈(-∞;-1)∪(0;1) возрастает x∈(1;0)∪(1;∞) x= -1,1 min y= 1 x=0 max y=3.
5) y''= 24x²-8=8(3x²-1)=0 x=1/√3, -1/√3 точки перегиба
х³ + у³ = (х+у)(х²+ху+у²) = 10(х²+ху+у²)
чтобы сумма кубов была наименьшей, нужно найти минимум для выражения в скобках (т.к. 10 уже не изменится)))
х²+ху+у² = х²+2ху+у² - ху = (х+у)² - ху = 100 - ху = 100 - (10-у)у =
= 100 - 10у + у² это квадратный трехчлен (график -- парабола, ветви вверх))), своего минимума достигает в вершине параболы...
абсцисса вершины: у₀ = -b / (2a) = 10/2 = 5
тогда х = 10-у = 5
другой вариант рассуждений:
х = 10-у
х³ + у³ = (10-у)³ + у³ = 10³ - 300у + 30у² - у³ + у³ = 30у² - 300у + 1000
вновь парабола, ветви вверх, минимум в вершине для
у₀ = -b / (2a) = 300/(2*30) = 10/2 = 5
тогда х = 5 тоже))