(2х+5)(8-х)<0
16x-2x^2+40-5x<0
- 2x^2+11x+40<0 уравнение действительно при x= - 2,5
D=121+4*2*40=441
x1=(11+21)/4=8
x2=(11-21)/4=- 2,5
нули функции это те значения аргумента функиии х, при которых ззначение функции y равно 0.
т.е. нужно найти х для которых ax^2+c=0 т.е. решить уравнение
ax^2+c=0
ax^2=-c
при а=0 и с=0 уравнение имеет вид
0x^2=0 и уравнение имеет бесконечно много нулей (функция имеет вид y=0)
если а=0 и с не равно 0 тогда решений нет (у функции нет нулей)
если а не равно 0, тогда перепишем уравнение в виде
x^2=-c/a которое имеет решение при условии -c/a>=0
т.е. при (a>0, c<=0 или a<0, c>=0)
итого данная функция имеет нули при a>0, c<=0
или a<0, c>=0
или а=с=0
В решении.
Объяснение:
Найдите сумму и разность многочленов А и В. Запишите результат как многочлен стандартного вида.
1) Записать в одну строку, второй многочлен в скобках, между ними знак + или -.
2)Раскрыть скобки. Если между многочленами знак +, во втором многочлене знаки не меняются, если перед скобками знак -, меняются на противоположные.
3)Привести подобные члены.
4)Записать результат в стандартном виде, т.е., в порядке убывания степеней.
а) 5х² - 0,18у³ + (6,2х² + 7у³)=
=5х² - 0,18у³ + 6,2х² + 7у³=
=6,82у³ + 11,х²;
б) 5х² - 0,18у³ - (6,2х² + 7у³)=
=5х² - 0,18у³ - 6,2х² - 7у³=
= -7,18у³ - 1,2х².
а) 76n⁴ - 27t² + (30t² - 80n⁴)=
=76n⁴ - 27t² + 30t² - 80n⁴=
= -4n⁴ + 3t²;
б) 76n⁴ - 27t² - (30t² - 80n⁴)=
=76n⁴ - 27t² - 30t² + 80n⁴=
=156n⁴ - 57t₂.
Решение на фото!
Объяснение:
Полное решение на приложенной фотографии.