Объяснение:
Нужно решить полное квадратное уравнение 2x2 + 5x - 7 = 0.
И насколько нам известно мы должны вспомнить и вычислить дискриминант первым действием.
D = b2 - 4ac;
Начнем с того, что выпишем коэффициенты уравнения:
a = 2; b = 5; c = -7;
Вычисляем дискриминант:
D = 52 - 4 * 2 * (-7) = 25 + 56 = 81;
Корни уравнения мы ищем по следующим формулам:
x1 = (-b + √D)/2a = (-5 + √81)/4 = (-5 + 9)/4 = 4/4 = 1;
x2 = (-b - √D)/2a = (-5 - √81)/4 = (-5 - 9)/4 = -14/4 = -3,5;
ответ: x = 1 и x = -3,5 корни уравнения
1). R = 12 см
l = 2πR·α / 360°
1. l = 2π·12·36° / 360° = 24π/10 = 2,4π см
2. l = 2π·12·72° / 360° = 4,8π см
3. l = 2π·12·45° / 360° = 3π см
4. l = 2π·12·15° / 360° = π см
2) l = 2πR R = l / (2π)
S = πR² = πl² / (4π²) = l² / (4π)
1. l = 6π см
S = 36π² / (4π) = 9π см
2. l = 4π см
S = 16π² / (4π) = 4π см²
3. l = 10π см
S = 100π² / (4π) = 25π см²
4. l = 8π см
S = 64π² / (4π) = 16π см²
3)
а) R = 12 см,
l = πR·α / 180°
α = l · 180° / (πR)
1. l = 2π см
α = 2π · 180° / (12π) = 30°
2. l = 3π см
α = 3π · 180° / (12π) = 45°
б) R = 10 см,
Sсект = πR²·α / 360°
α = Sсект·360° / (πR²)
1. Sсект = 5π см²
α = 5π·360° / (100π) = 18°
2. Sсект = 10π см²
α = 10π·360° / (100π) = 36°
1) √x=t, t≥0
t²+9t+14=0
D=81-56= 25
t1= (-9-5)/2= -7 - не корень
t2= (-9+5)/2= -2 - не корень
корней нет.
2) x²=t, t≥0
9t²-19t+2=0
D= 361-72= 289
t1= (19-17)/18= 1/9
t2= (19+17)/18= 2
x1= -1/3
x2= 1/3
x3= -√2
x4= √2
3) x≠-8
2x²-13x+6=0
D= 169- 48= 121
x1= (13-11)/4= 0,5
x2= (13+11)/4= 6