3.68. a) -2;0. 3;5.
б) -10; -6. -1;3.
3.69. а) -5;25. 3;9.
б) 1;-17. -1;-17.
Объяснение:
подстановки.
a) x^2-y=4; (1)
y=x+2; (2)
(2) подставляем в (1)
x^2 - (x+2)=4;
x^2-x-2-4=0;
x^2-x-2-4=0;
x^2-x-6=0;по т. Виета
x1+x2=1;
x1*x2=-6;
x1=-2; x2=3.
x1=-2 подставляем в (2)
y=-2+2;
y1=0;
x2=3 подставляем в (2)
y=3+2;
y2=5.
б) x=y-4; (3)
y^2+3x=6; (4)
(3) подставляем в (4):
y^2+3(y-4)=6;
y^2+3y-12=6;
y^2+3y-12-6=0;
y^2+3y-18=0;
по т. Виета
y1+y2=-3; y1*y2=-18;
y1=-6; y2=3.
y1=-6 подставляем в (3)
x=-6-4;
x1=-10;
y2=3 подставляем в (3)
x=3-4;
x2=-1.
сложения.
а) x^2-y=0; (5)
2x+y=15; (6)
Складываем (5) и (6):
x^2+2x=15;
x^2+2x-15=0;
по т. Виета
x1+x2=-2; x1*x2=-15;
x1=-5; x2=3;
x1=-5 подставляем в (6):
2(-5)+y=15;
-10+y=15;
y=15+10;
y1=25;
x2=3 подставляем в (6):
2*3+y=15;
6+y=15;
y=15-6;
y2=9.
б) x^2-y=18; (7)
x^2+y=-16; (8)
Складываем (7) и (8):
x^2 + x^2=18+(-16);
2x^2=2;
x^2=1;
x1,2=±1;
x1=1 подставляем в (7)
1^2-y=18;
-y= 18-1;
y1= -17;
x=-1 подставляем в (7)
(-1)^2-y=18;
1-y=18;
y2=-17.
а) x² + 4x + 10 ≥ 0
D = 4² - 4· 10 = - 24
График функции у = x² + 4x + 10 - парабола веточками вверх, пересечения с осью Ох нет, т.к. D < 0, поэтому у > 0 и ответ
2) Решением неравенства является вся числовая прямая
b) -x² + 10x - 25 > 0
-(х - 5)² > 0
Поскольку -(х - 5)² < 0 при любых х, то ответ
1) Неравенство не имеет решений
c) x² + 3x + 2 ≤ 0
D = 3² - 4 · 2 = 1
x₁ = 0.5(-3 - 1) = -2
x₂ = 0.5(-3 + 1) = -1
График функции у = x² + 3x + 2 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = -1 поэтому решением неравенства является интервал [-2; -1] , и ответ
4) Решением неравенства является закрытый промежуток.
d) -x² + 4 < 0
x² - 4 > 0
График функции у = x² - 4 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = 2 поэтому решением неравенства является интервалы (-∞; -2) и (2; +∞) , и ответ
6) Решением неравенства является объединение двух промежутков.
Объяснение: