a - первая цифра (кол-во десятков)
b - вторая цифра (кол-во единиц)
Тогда искомое число равно 10a + b
Исходя из условия составим систему уравнений и решим ее:
10a + b = 6(a + b)
10a + b + ab = 74
Из первого уравнения выразим a (a = 5b/4) и подставим во второе. После некоторых преобразований получим квадратное уравнение:
1,25b^2 + 13,5b - 74 = 0
решить которое не составит никакого труда (D = 552,25, корень из D = 23,5).
Получим 2 корня, один из которых отрицательный и, следовательно, не подходит, а второй корень b = 4, это и есть вторая цифра. Подставив ее в уравнение a = 5b/4 получим, что a = 5
Итого: a = 5, b = 4. Искомое число = 54
Общий знаменатель в данном случае - 14. Поэтому первую дробь домножаем на 2 и "двойку" во второй части уравнения домножаем на 14. Получаем после этого уравнение:
2с - (3с - 1) = 2 * 14 Открываем скобки:
2с - 3с + 1 = 28
-с = 27
с = -27
Всегда стоит проверять, правильно ли решено, т.е. подставить полученное решение с = -27 в данное уравнение. Если обе части уравнения окажутся равны, то решение правильное.