Упростите (cos(22°-α)-cos(18°+α))²+(cos(68°-α)+sin(72°-α))²
Объяснение: информация для размышления
sin(90 -α) =cosα ; cos(90-α) = sinα ; cos(α-β)=cosα*cosβ+sinα*sinβ
(A ± B)² =A²±2A*B +B)²
!?
1. (cos(22°-α) - cos(18°+α))²+(cos(68°- α)+sin(72°-α))² =
(cos(22°-α)- cos(18°+α))²+(cos(90° -(22°+α))+sin(90°-(18°+a))² =
(cos(22°-α)- cos(18°+α))²+(sin(22°+α)+cos(18°+a) )² =
cos²(22°-α)- 2cos(22°-α)*cos(18°+α)+cos²(18°+α) +
sin²(22°+α)+2sin(22°+α)*cos(18°+a)+ cos²(18°+a) =
!!
2. (cos(22°-α) - cos(18°+α))²+(cos(68°+ α)+cos(72°-α))² =
(cos(22°-α)- cos(18°+α))²+(cos(90° -(22°-α))+cos(90°-(18°+α))² =
(cos(22°-α)- cos(18°+α))²+(sin(22°-α)+sin(18°+α) )² =
cos²(22°-α)- 2cos(22°-α)*cos(18°+α)+ cos²(18°+α) +
sin²(22°-α)+2sin(22°- α)*sin(18°+α) + sin²(18°+α) =
( cos²(22°-α)+sin²(22°-α)) -2(cos(22°-α)*cos(18°+α)- sin(22°- α)*sin(18°+a) )+
( cos²(18°+α) +sin²(18°+a) ) =1 -2cos(22-α+18+α) +1 =2 -2cos40°=
2(1 -cos40°) =2*2sin²20° = 4sin²20 .
! ! !
3. (cos(32°-α) - cos(28°+α))²+(cos(58°+ α)+cos(62°-α))² =
(cos(32°-α)- cos(28°+α))²+(cos(90° -(32°-α))+cos(90°-(28°+α))² =
(cos(32°-α)- cos(28°+α))²+(sin(32°-α)+sin(28°+α) )² =
cos²(32°-α) - 2cos(32°-α)*cos(28°+α)+ cos²(28°+α) +
sin²(32°-α) + 2sin(32°- α)*sin(28°+α) + sin²(28°+α) =
( cos²(32°-α)+sin²(32°-α)) -2(cos(32°-α)*cos28°+α)- sin(32°- α)*sin(28°+a) )+
( cos²(28°+α) +sin²(18°+a) ) =1 -2cos(32-α+28+α) + 1 = 2 -2cos60°=
2-2*1/2= 1
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2(1 -cos60°) =2*2sin²30° =4sin²30 = 4*(1/2)² =4*1/4 =1
3/(2^(2 - x²) -1)² - 4/(2^(2- x²) -1) + 1 ≥ 0 ;
замена : t = 2^(2-x²) -1
3 / t² - 4 / t +1 ≥ 0 ;
(t² - 4t +3) / t² ≥ 0
для квадратного трехчлена t² - 4t +3 t₁=1 корень: 1² - 4*1+3 = 1- 4+3 =0.
t₂ =3/t₁=3/1=1 (или t₂ =4 -1=3)
* * * наконец можно и решить уравнение t² - 4t +3=0 * * *
(t² - 4t +3) / t² ≥ 0 ⇔ (t -1)(t - 3) / t² ≥ 0 .
+ + - +
(0) [1] [ 3]
* * * совокупность неравенств [ { t ≤ 1 ; t ≠0 . { t ≥ 3 * * *
a)
{ 2^(2-x²) -1 ≤ 1 ; 2^(2-x²) -1 ≠ 0 .⇔ { 2^(2-x²) ≤ 2 ; 2^(2-x²) ≠ 1 . ⇔
{ 2^(2-x²) ≤ 2¹ ; 2^(2-x²) ≠ 2⁰.⇔ {2-x² ≤ 1 ; 2 - x² ≠ 0.⇔{ x² -1 ≥ 0 ; x² ≠ 2⇔
{ (x+1)(x-1) ≥ 0 ; x ≠ ±√2 . ⇒ x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ [1 ; √2) U (√2 ; ∞) .
b)
2^(2-x²) -1 ≥ 3 ⇔ 2^(2-x²) ≥ 4 ⇔2^(2-x²) ≥ 2² ⇔2- x² ≥ 2 ⇔ x² ≤ 0 ⇒ x=0.
ответ: x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ { 0} ∪ [1 ; √2) U (√2 ; ∞) .