Для того, чтобы найти точки пересечения прямых у = 3 - х и у = 2х, нужно приравнять правые части и решить уравнение относительно переменной х.
Следовательно получим:
3 - х = 2х (перенесем переменную х из левой части в правую, поменяв знак на противоположный);
3 = 2х + х;
3 = х * (2 + 1);
3 = х * 3 (для того, чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель);
х = 3 : 3;
х = 1.
Тогда у = 3 - 1 = 2.
Следовательно точка пересечения прямых у = 3 - х и у = 2х имеет координаты: (1; 2).
ответ: (1; 2).
Объяснение:
Объяснение:
a) x²-4x-3
ООФ (-∞; +∞)
пересеч с Y ⇒ x=0, точка (0; -3)
пересеч с X ⇒ y = 0
x²-4x-3 = 0
D = 16+12 = 28
x ₁₋₂ = (4 ± √28)/2 = 2±√7
точки (2-√7; 0), (2+√7;0)
б) (х²-2) / (x²+2)
ООФ (-∞; +∞)
пересеч с Y ⇒ x=0, точка (0; -1)
пересеч с X ⇒ y = 0
х²-2 = 0
x² = 2
(√2;0), (-√2;0)
а) x²-8x-9, ООФ (-∞; +∞)
пересеч с Y ⇒ x=0, точка (0; -9)
пересеч с X ⇒ y = 0
x²-8x-9 = 0
D = 64 + 36 = 100
x ₁₋₂ = (8 ±10) / 2
x₁ = -1
x₂ = 9
точки (-1;0), (9;0)
б) (x²-3)/ (x²+5)
ООФ (-∞; +∞)
пересеч с Y ⇒ x=0, точка (0; -0.6)
пересеч с X ⇒ y = 0
x²-3 = 0
x = ±√3
(-√3; 0), (√3;0)
Объяснение:
(x+6)(x-7) = - 2x + 7
х²+6х-7х-42+2х-7=0
х²+х-49=0