Чтобы упростить выражение 2a(а + b - с) - 2b(а - b - с) + 2c(а - b + с) откроем скобки и приведем подобные слагаемые.
Откроем скобки в заданном выражении
Для того, чтобы открыть скобки нам нужно вспомним несколько правил:
распределительный закон умножения относительно сложения и вычитания;
правило открытия скобок перед которыми стоит знак плюс;
правило открытия скобок перед которыми стоит знак минус.
Распределительный закон умножения относительно сложения звучит так: Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.
Аналогично распределительный закон звучит и для вычитания.
Правило раскрытия скобок, перед которыми стоит знак минус: скобки вместе со знаком минус опускаются, а знаки всех слагаемых в скобках заменяются на противоположные.
Правило раскрытия скобок, перед которыми стоит знак плюс или не стоит никакого знака, таково: скобки вместе с этим знаком опускаются, а знаки всех слагаемых в скобках сохраняются.
2а(а + b - с) - 2b(а - b - с) + 2с(а - b + с) = 2a * a + 2a * b - 2a * c - (2b * a - 2b * b - 2b * c) + 2c * a - 2c * b + 2c * c = 2a^2 + 2ab - 2ac - 2ab + 2b^2 + 2bc + 2ac - 2bc + 2c^2.
Сгруппируем и приведем подобные слагаемые
Слагаемые, имеющие одинаковую буквенную часть, называют подобными слагаемыми.
Чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть.
Пример:Решить уравнение x 2+ 14x + 45 = 0 Решение: Разложим многочлен на множители методом выделения полного квадрата.Для применения первой формулы необходимо получить выражениеx2+ 14x + 49 = 0.Поэтому прибавим и отнимем от многочлена x2+ 14x + 45 число 4, чтобы выделить полный квадрат x 2+ 14x + 45+4−4 =0 (x 2+ 14x + 45+4)−4=0(x 2+ 14x + 49)−4=0(x+7)2−4=0Применим формулу «разность квадратов» a2−b2=(a−b)⋅(a+b) (x+7)2−22=0( x + 7 – 2 ) ( x + 7 + 2 ) = 0( x + 5 ) ( x + 9 ) = 0x + 5 = 0 x + 9 = 0x1 = – 5 x2 = – 9 ответ: –9;–5.Пример:Решить уравнение x2 − 6x − 7 = 0Решение: Выделим в левой части полный квадрат.Для применения второй формулы необходимо получить выражение x2 − 6x +9 = 0 Поэтому запишем выражение x2 − 6x в следующем виде: x2−6x =x2−2⋅x⋅3 В полученном выражении первое слагаемое - квадрат числа x, а второе - удвоенное произведение x на 3.Чтобы получить полный квадрат, нужно прибавить 32 Итак, прибавим и отнимем в левой части уравнения 32, чтобы выделить полный квадрат.x2 − 6x − 7 = x2 − 2⋅ x ⋅3 + 32 − 32 − 7 = (x2 − 2⋅ x ⋅3 + 32 ) − 32 − 7 ==(x − 3)2 − 9 − 7 = (x − 3)2 − 16. Подставим в уравнение и применим формулу a2−b2=(a−b)⋅(a+b).(x −3)2−16=0(x −3)2=16x −3=4x −3= −4x=3+4x = 3−4x1=7x2= −1 ответ:–1;7.
Объяснение:
Чтобы упростить выражение 2a(а + b - с) - 2b(а - b - с) + 2c(а - b + с) откроем скобки и приведем подобные слагаемые.
Откроем скобки в заданном выражении
Для того, чтобы открыть скобки нам нужно вспомним несколько правил:
распределительный закон умножения относительно сложения и вычитания;
правило открытия скобок перед которыми стоит знак плюс;
правило открытия скобок перед которыми стоит знак минус.
Распределительный закон умножения относительно сложения звучит так: Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.
Аналогично распределительный закон звучит и для вычитания.
Правило раскрытия скобок, перед которыми стоит знак минус: скобки вместе со знаком минус опускаются, а знаки всех слагаемых в скобках заменяются на противоположные.
Правило раскрытия скобок, перед которыми стоит знак плюс или не стоит никакого знака, таково: скобки вместе с этим знаком опускаются, а знаки всех слагаемых в скобках сохраняются.
2а(а + b - с) - 2b(а - b - с) + 2с(а - b + с) = 2a * a + 2a * b - 2a * c - (2b * a - 2b * b - 2b * c) + 2c * a - 2c * b + 2c * c = 2a^2 + 2ab - 2ac - 2ab + 2b^2 + 2bc + 2ac - 2bc + 2c^2.
Сгруппируем и приведем подобные слагаемые
Слагаемые, имеющие одинаковую буквенную часть, называют подобными слагаемыми.
Чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть.
2a^2 + 2ab - 2ac - 2ab + 2b^2 + 2bc + 2ac - 2bc + 2c^2 = 2a^2 + 2b^2 + 2c^2.
ответ: 2a^2 + 2b^2 + 2c^2.