Пусть a, b - данные числа. Имеем систему уравнений (сразу занумерую их, но Вы сначала напишите под знаком системы): a - b = 19 (1) a^2 - b^2 = 627 (2) (2) можно представить в виде (a - b)(a + b) = 627 - по формуле сокращенного умножения. a - b мы уже знаем из первого уравнения, это 19, то есть 19*(a + b) = 627, a + b = 33. Тогда a = 33 - b, поставим в (1): 33 - b - b = 19, b = 7. Значит, a = 26. ответ: 7; 26. Система с нормальным оформлением в приложении. Не забудьте уточнить, что a и b - данные числа.
Многое в поставленной вами задачи зависит от того Какие значения может принимать Х изменяясь в своей области определения . Кроме того важно сразу отметить что если вы ищете аналитическую закономерность (виде некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать любой из стандартных методов интерполяции : линейную, дробно- линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; P(X2)=1+A1*1+A2*1*1=2 P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости между X и Y. Естественно этот результат не единственен. Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»
y=x^2 Графиком функции является парабола ветви которой направлены вверх. Парабола имеет своей вершиной начало координат.
X^2=-3*x-4
у= -3*x-4 Графиком функции является прямая, проходящая через 2 и 4 координатные углы.
Найдём координаты точек пересечения графиков функций решив уравнение X^2=-3*x-4
X^2+3*x+4=0
D=9-16=-5 <0 корней нет
Следовательно графики функций не имеют точек пересечения