В решении.
Объяснение:
Двое снегоуборщиков очищали территорию Сибирского федерального университета от снега. После того как первый проработал 3 часа, а второй – 7 часов, оказалось, что они выполнили 40% всей работы. Проработав совместно еще 5 часов, они осознали, что им осталось выполнить еще 635 всей работы. За сколько часов, работая отдельно, каждый из них мог бы очистить эту территорию?
1 - вся территория (вся работа).
х - производительность 1 снегоуборщика.
у - производительность 2 снегоуборщика.
По условию задачи система уравнений:
3*х + 7*у = 0,4
(х + у)*5 = 1 - 0,4 - 6/35
Вычислить: 1 - 0,4 - 6/35 = 0,6 - 6/35 = 3/5 - 6/35 = 15/35 = 3/7.
(х + у)*5 = 3/7
Умножить уравнение на 7, чтобы избавиться от дробного выражения:
35*(х + у) = 3
Система уравнений к решению:
3х + 7у = 0,4
35х + 35у = 3
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = (0,4 - 7у)/3
35*(0,4 - 7у)/3 + 35у = 3
Умножить уравнение на 3, чтобы избавиться от дробного выражения:
35*(0,4 - 7у) + 105у = 9
14 - 245у + 105у = 9
- 140у = 9 - 14
-140у = -5
у = -5/-140
у = 1/28 - производительность 2 снегоуборщика.
х = (0,4 - 7у)/3
х = (0,4 - (7*1/28))/3
х = (0,4 - 0,25)/3
х = 0,15/3
х = 0,05 = 5/100 = 1/20 - производительность 1 снегоуборщика.
За сколько часов, работая отдельно, каждый из них мог бы очистить эту территорию?
1 : 1/28 = 28 (часов) - 2 снегоуборщик.
1 : 1/20 = 20 (часов) - 1 снегоуборщик.
Проверка:
3 * 1/20 + 7 * 1/28 = 3/20 + 1/4 = 8/20 = 0,4, верно.
5*(1/20 + 1/28) = 5 * 3/35 = 3/7, верно.
ответ: 1.{3a+7b=8
{a+5b=4/*(-3)⇒-3a-15b=-12
прибавим
-8b=-4
b=-4:(-8)
b=0,5
a+5*0,5=4
a=4-2,5
a=1,5
ответ (1,5;0,5)
{4x-2y+6x+3y=32⇒10x+y=32/*7⇒70x+7y=224
{10x-5y-4x-2y=4⇒6x-7y=4
прибавим
76x=228
x=228:76
x=3
10*3+y=32
y=32-30
y=2
ответ (3;2)
2.Пусть х км в час - собственная скорость катера, у км в час - скорость течения реки.
Тогда (х+у) км в час - скорость катера по течению,
(х-у) км в час - скорость катера против течения.
3·(х+у) км путь катера по течению за 3 часа.
5·(х-у) км путь катера против течения за 5 часов.
Всего по условию задачи 92 км.
Первое уравнение:
3·(х+у) + 5·(х-у) = 92;
5·(х+у) км путь катера по течению за 5 часов.
6·(х-у) км путь катера против течения за 6 часов.
По условию задачи 5·(х+у) больше 6·(х-у) на 10.
Второе уравнение:
5·(х+у) - 6·(х-у) = 10.
Получена система двух уравнений с двумя переменными.
{3·(х+у) + 5·(х-у) = 92 ⇒{3x+3y+5x-5y=92 ⇒ { 8x-2y=92 ⇒ {4x-y=46
{5·(х+у) - 6·(х-у) = 10 ⇒{5x+5y-6x+6y=10 ⇒ {-x+11y=10 ⇒ {x=11y-10
{4·(11y-10)-y=46
{x=11y-10
{44y-40-y=46
{x=11y-10
{43y=86
{x=11y-10
{y=2
{x=11·2-10=12
О т в е т. 12 км в час - собственная скорость катера, 2 км в час - скорость течения реки.
3.График линейной функции имеет вид: y=kx + m
Известно, что график проходит через точки А(2;-1) и В(-2;-3). Согласно условию задачи,составлю систему уравнений.
2k+m= -1
-2k+m= -3
2m = - 4
m= - 2
Подставим значение m= -2 в одно из уравнений, получим:
2k - 2 = -1
2k= 1
k= 1/2 = 0,5
График линейной функции имеет вид: y = 0,5k - 2
Объяснение:
1)mn является средней линией треугольника следовательно она равна половине основания:57÷2=28,5
2)360-(90+90+127)=53°
<АОВ=53°
3)задача неверная т.к сумма противоположных или соседних углов равна 180° а не 68°.