Первое неравенство. Решить как квадратное уравнение:
х²-4х+3=8
х²-4х+3-8=0
х²-4х-5=0, ищем корни:
х₁,₂=(4±√16+20)/2
х₁,₂=(4±√36)/2
х₁,₂=(4±6)/2
х₁= -2/2
х₁= -1
х₂=10/2
х₂=5
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -1 и х=5. По графику ясно видно, что у<=0 при х от -1 до 5, то есть, решения неравенства находятся в интервале
х∈ [-1, 5], это решение первого неравенства.
Неравенство нестрогое, значения х= -1 и х=5 входят в число решений неравенства, скобки квадратные.
Второе неравенство. Также решим как квадратное уравнение, удобнее определять интервалы решений неравенства:
(x-3)(x-1)>0
х²-х-3х+3>0
х²-4х+3>0, ищем корни:
х₁,₂=(4±√16-12)/2
х₁,₂=(4±√4)/2
х₁,₂=(4±2)/2
х₁=2/2
х₁=1
х₂=6/2
х₂=3
Снова чертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 1 и х=3. По графику ясно видно, что у>0 при х влево и вправо от точек пересечения параболой оси Ох, то есть,
х∈(-∞, 1)∪(3, +∞). Это решение второго неравенства.
Неравенство строгое, скобки круглые.
Теперь нужно найти пересечение решений неравенств, то есть, такое решение, которое подходит и первому, и второму неравенствам.
На числовой оси отмечаем точки -1, 1, 3, 5. Наносим штриховку в соответствии с двумя решениями.
Находим пересечение: x∈[-1, 1)∪(3, 5], то есть решения системы неравенств находятся в интервале при х от -1 до 1, и от 3 до 5.
Значения х= -1 и х=5 входят в число решений системы, скобка квадратная, значения х=1 и х=3 не входят в число решений, скобка круглая.
Составим систему: x - y = 5 x*y = 84 Выразим "х" через "у" и подставим полученное значение во второе уравнение. x = 5 + y y*(5 + y)=84 Получаем квадратное уравнение: y*y + 5*y - 84 = 0 Находим дискриминант: D= 5*5 - 4*(-84) = 25 + 336 = 361 = 19*19 Находим возможные действительные значения "у": y1 = ( - 5 + 19)/2 = 7 y2 = ( - 5 - 19)/2 = - 12 Подставляем полученные значения в первое уравнение. Потом выполняем проверку через подстановку полученного значения "х" во второе уравнение. Получаем, что искомые числа: -7 и -12, а также 12 и 7.
Продолжим ряд дальше: 1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910, 1234567891011, 123456789101112, Первое число, которое делится на 4 - 12, второе в ряду. Второе число - 123456, 6 в ряду. Но следующее, 10 число 12345678910 не делится, зато делится 12 число 123456789101112. Дальше они идут через 4: 16, 20, 24, 28, ..., 100. Таких чисел от 123...12 до 123...100 будет (100-12)/4 + 1 = 88/4 + 1 = 23 числа. Плюс первые числа 12 и 123456, всего 25 чисел.
господи! ты хоть бы в поисковик забил. это уже было на сайте
x∈[-1, 1)∪(3, 5]
Объяснение:
Решить систему неравенств:
х²-4х+3<=8
(x-3)(x-1)>0
Первое неравенство. Решить как квадратное уравнение:
х²-4х+3=8
х²-4х+3-8=0
х²-4х-5=0, ищем корни:
х₁,₂=(4±√16+20)/2
х₁,₂=(4±√36)/2
х₁,₂=(4±6)/2
х₁= -2/2
х₁= -1
х₂=10/2
х₂=5
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -1 и х=5. По графику ясно видно, что у<=0 при х от -1 до 5, то есть, решения неравенства находятся в интервале
х∈ [-1, 5], это решение первого неравенства.
Неравенство нестрогое, значения х= -1 и х=5 входят в число решений неравенства, скобки квадратные.
Второе неравенство. Также решим как квадратное уравнение, удобнее определять интервалы решений неравенства:
(x-3)(x-1)>0
х²-х-3х+3>0
х²-4х+3>0, ищем корни:
х₁,₂=(4±√16-12)/2
х₁,₂=(4±√4)/2
х₁,₂=(4±2)/2
х₁=2/2
х₁=1
х₂=6/2
х₂=3
Снова чертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 1 и х=3. По графику ясно видно, что у>0 при х влево и вправо от точек пересечения параболой оси Ох, то есть,
х∈(-∞, 1)∪(3, +∞). Это решение второго неравенства.
Неравенство строгое, скобки круглые.
Теперь нужно найти пересечение решений неравенств, то есть, такое решение, которое подходит и первому, и второму неравенствам.
На числовой оси отмечаем точки -1, 1, 3, 5. Наносим штриховку в соответствии с двумя решениями.
Находим пересечение: x∈[-1, 1)∪(3, 5], то есть решения системы неравенств находятся в интервале при х от -1 до 1, и от 3 до 5.
Значения х= -1 и х=5 входят в число решений системы, скобка квадратная, значения х=1 и х=3 не входят в число решений, скобка круглая.