В решении.
Объяснение:
1) При каких значениях переменной принимает неотрицательное значение выражение -x²-2x+120?
Неотрицательное - значит, больше либо равно 0.
-x²-2x+120 >=0
Приравнять к нулю и решить как квадратное уравнение:
-x²-2x+120 =0/-1
х²+2х-120=0
D=b²-4ac =4+480=484 √D= 22
х₁=(-b-√D)/2a
х₂=(-b+√D)/2a
х₁=(-2-22)/2
х₁= -24/2
х₁= -12;
х₂=(-2+22)/2
х₂=20/2
х₂=10.
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -12 и х=10, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у>=0 (как в неравенстве), при х от -12 до х=10, часть параболы выше оси Ох, то есть, решения неравенства находятся в интервале
х∈ [-12, 10]. ответ задания.
Неравенство нестрогое, значения х= -12 и х= 10 входят в решения неравенства, поэтому скобки квадратные.
Привет! В первом если раскрыть скобки а^2 + ав -ав+в^2 = а^2+в^2
так как ав и -ав взаимо уничтожаются . Получается а^2+в^2
Во втором случае также а^2+ ав -ав - в^2= а^2-в^2
В примере 3 можно раскрыть скобки а^2 + ав + ав + в^2= а^2+2ав+в^2
Все примеры тождественно равны.
Есть еще формула квадрата суммы двух выражений
^2 - в квадрате
Объяснение:
Привет! В первом если раскрыть скобки а^2 + ав -ав+в^2 = а^2+в^2
так как ав и -ав взаимо уничтожаются . Получается а^2+в^2
Во втором случае также а^2+ ав -ав - в^2= а^2-в^2
В примере 3 можно раскрыть скобки а^2 + ав + ав + в^2= а^2+2ав+в^2
Все примеры тождественно равны.
Есть еще формула квадрата суммы двух выражений
^2 - в квадрате