Побудуйте графік функції y= І 2x+4 І
Користуючись побудованим графіком установіть при яких значаннях аргументу функція набуває додатних значень
Постройте график функции y = І 2x + 4 І
Пользуясь построенным графиком установите при которых значаннях аргумента функция принимает положительные значения
(10 - (x-a)) / (x-a) <= 0
дробь меньше нуля, когда числитель и знаменатель имеют разные знаки...
x-a < 0
10 - (x-a) >= 0
или
x-a > 0
10 - (x-a) <= 0
решение первой системы:
x-a < 0
x-a <= 10
x-a < 0
решение второй системы:
x-a > 0
x-a >= 10
x-a >= 10
решение первого неравенства: x < a или x >= a+10 (два луча)))
второе неравенство равносильно двойному неравенству:
-4 <= x-3a <= 4
3a-4 <= x <= 4+3a (один отрезок)))
если отметить все значения на числовой прямой, то станет очевидно, что
расстояние между концами первых двух лучей 10 единиц,
длина отрезка-решения второго неравенства = (4+3a)-(3a-4) = 8 единиц
система будет иметь единственное решение, когда эти лучи и отрезок имеют только одну общую точку...
это условие: 3a+4 = 10+a (правый край отрезка = левому краю луча (правого)))
2a = 6
a = 3