Для решения задачи необходимо определить производительность работы каждой из труб.
Представим весь объем воды в бассейне в виде 100% или 1.
В таком случае, за 1 час работы первая труба наполнит:
1 / 10 = 1/10 часть бассейна.
Вторая труба наполнит:
1 / 8 = 1/8 часть бассейна.
Находим продуктивность работы двух труб при совместной работе.
Для этого суммируем продуктивность каждой трубы.
1/10 + 1/8 = (Общий знаменатель 40) = 4/40 + 5/40 = 9/40.
В таком случае, после 1 часа совместной работы останется наполнить:
1 - 9/40 = 31/40 часть бассейна.
Решение:Введем независимые события:
А1 = (при аварии сработает первый сигнализатор);
А2 = (при аварии сработает второй сигнализатор);
по условию задачи P(A1)=0,95, P(A2)=0,9.
Введем событие Х = (при аварии сработает только один сигнализатор). Это событие произойдет, если при аварии сработает первый сигнализатор и не сработает второй, или если при аварии сработает второй сигнализатор и не сработает первый, то есть
Тогда вероятность события Х по теоремам сложения и умножения вероятностей равна
ответ: 0,14.
-0,5<=х<1/7
Объяснение:
Решим неравенства по отдельности. Первое
Второе
подставим вместо x значение между 1 и -0.5 (например, 0)
неравенство выполняется, значит, нужный нам интервал во втором неравенстве [-0.5; 1]
теперь наложим интервалы друг на друга:
в итоге получим
-0.5<=х<1/7