n=1: 1 = (1(1+1)/2)^2 = (1*2/2)^2=1^2=1 => для n=1 - верно
n=k: 1^3+2^3+...+k^3=(k(k+1)/2)^2 - для k
n=k+1: 1^3+2^3+...+(k+1)^3 = ((k+1)(k+2)/2)^2 - для k+1
Вернемся к n=k, прибавим к нему соответствующее значение (k+1), то есть (k+1)^3
1^3+2^3+...+k^3+(k+1)^3 = (k(k+1)/2)^2 + (k+1)^3 = k^2*(k+1)^2/4 + (k+1)^3 = (k+1)^2 * (k^2/4 + (k+1)) = (k+1)^2/4 (k ^2+ 4k + 4) = (k+1)^2/4*(k+2)^2 = ((k+1)(k+2)/2)^2 - теперь сравните полученный результат с n=k+1.
Так как они равны, то по методу математической индукции исходное выражение верно при любом значении n, что и требовалось доказать
На полуокружности АВ взяты точки C и D так, что дуга АC=37 градусов , дуга BD=23 градуса.Найдите хорду CD ,если радиус окружности равенR=15 см.Сделайте плз с чертежом и как можно понятнее каждое действие
построим рисунок по условию
дуга АC=37 -центральный угол АОС=37
дуга BD=23 --центральный угол АОС=37=23
тогда -центральный угол СОD=180-37-23=120
В треугольнике СОD сторона (хорда)CD
треугольник СОD -равнобедренный ОС=ОD=R=15
построим высоту к стороне CD, тогда СК=КD
высота ОК делит угол COD пополам КОD=120/2=60
рассмотрим треугольник ОКD-прямоугольный
в нем OD-гипотенуза, KD-катет
по свойству прямоугольного треугольника KD=OD*sin(KOD)=R*sin60=15*√3/2
тогда хорда CD=2KD=2*15*√3/2=15√3
ответ хорда CD=15√3
V=3км/год=15-9
Объяснение:
6:2=3