а) 4а² - 12ab +9b²
б) (5x)² - (3y)² = 25x² - 9y²
в) 2a³(a² + 4ab + 4b²) = 2a^5 + 8a^4b + 8a³b²
2а-3 )²+ ( 3-2а )( 3+2а ) -3 ( а+2 )( 3а-1 )=4a²-12a +9+9-4a²-9a²-3a-18a-6= -9a² -33a+12
-50-20х-2х²= - 2(х²+10x+25)= -2 (x+5)(x+5)
1. У выражение: а) 3а2b • (-5а3b)=-15а^5b^2
б) (2х2у)3=8х^6у^3
2. Решите уравнение 3х - 5 (2х + 1) = 3 (3 - 2х)
3х-10х-5=9-6х
-7х+6х=9+5
-х=14
х=-14.
3. Разложите на множители: а) 2ху - 6y2=2у(х-6y)
б) а3 - 4а=а(а^2-4)
4. Периметр треугольника ABC равен 50 см. Сторона АВ на 2 см больше стороны ВС, а сторона АС в 2 раза больше стороны ВС. Найдите стороны треугольника
пусть ВС=х, имеем АВ=х+2,а АС=2х
х+х+2+2х=50
4х=48
х=12 см-ВС
АВ=12+2=14 см
АС=2*12=24 см
и задача
Ежедневно рабочий должен был изготовлять 20 деталей, но изготовлял 30. (20+10=30). Пусть за х дней рабочий должен был выполнить задание, тогда за х-4 дня он его выполнил. По условию задачи составляем уравнение:
30(x-4)=20x
30x-120=20x
30x-20x=120
10x=120
x=120:10
x=12
ответ: за 12 дней
а) (x - 3)(x - 7) - 2x(3x - 5) = x*x - 3*x - 7*x - 3(-7) - 2x*3x - 2x(-5) =
= x^2 - 10x + 21 - 6x^2 + 10x = -5x^2 + 21
б) 4a(a - 2) - (a - 4)^2 = 4a^2 - 8a - (a^2 - 8a + 16) =
= 4a^2 - 8a - a^2 + 8a - 16 = 3a^2 - 16
в) 2(m+1)^2 - 4m = 2(m^2+2m+1) - 4m = 2m^2 + 4m + 2 - 4m = 2m^2 + 2
2) а) Выносим х за скобки и раскладываем разность квадратов
x^3 - 9x = x(x^2 - 9) = x(x - 3)(x + 3)
б) Выносим -5 за скобки и получаем квадрат суммы
-5a^2 - 10ab - 5b^2 = -5(a^2 + 2ab + b^2) = -5(a + b)^2
3) Раскрываем скобки
(y^2 - 2y)^2 - y^2(y + 3)(y - 3) + 2y(2y^2 + 5) =
= y^4 - 4y^3 + 4y^2 - y^2(y^2 - 9) + 4y^3 + 10y =
= y^4 - 4y^3 + 4y^2 - y^4 + 9y^2 + 4y^3 + 10y = 13y^2 + 10y
4) а) Разность квадратов два раза
16x^4 - 81 = (4x^2 - 9)(4x^2 + 9) = (2x - 3)(2x + 3)(4x^2 + 9)
б) Разность квадратов
x^2 - x - y^2 - y = (x^2 - y^2) - (x + y) = (x-y)(x+y) - (x+y) = (x+y)(x-y-1)
5) x^2 - 4x + 9 = x^2 - 4x + 4 + 5 = (x - 2)^2 + 5
При любом х значение квадрата >= 0, а выражения >= 5