а) (x²-1)(x² - 5x + 4) < 0 Разложим квадратные трехчлены на множители (х-1)(х+1)(х-1)(х-4) < 0 (x-1)²(x+1)(x-4) < 0 Находим нули функции х-1=0 х+1=0 х-4=0 х=1 х=-1 х=4 Отмечаем точки на числовой прямой пустым кружком ( мы - круглыми скобками) и расставляем знаки + - _ + (-1)(1)(4) ответ. (-1; 1)U(1;4)
б) (x² - 5x + 6)(x² - 3x +2) <0 Разложим квадратные трехчлены на множители (х-2)(х-3)(х-1)(х-2) < 0 (x-2)²(x-3)(x-1) < 0 Находим нули функции х-2=0 х-3=0 х-1=0 х=2 х=3 х=1 Отмечаем точки на числовой прямой пустым кружком ( мы - круглыми скобками) и расставляем знаки при х = 10 (10-2)²(10-3)(10-1)>0 На (3;+∞) , содержащем х=10 ставим знак +, далее влево -, при прохождении через точку 2 знак не меняется, так как множитель (х-2) входит в неравенство в степени 2. И на последнем интервале слева снова знак + + - - + (1)(2)(3) ответ. (1; 2)U(2;3)
так как касательная параллельна прямой у= 5х+4
то у этих прямых одинаковый угловой коэфициент =5
Угловой коэффициент касательной - это производная в точке касания.
у' = 6x² +12x +11
Найдем точку касания
6x² +12x +11=5
6х²+12х+6=0
6(x² +2x +1) = 0
6(x+1)² = 0
x = -1
Значит точка касания при х₀= -1
Найдем вторую координату
у₀ = 2*(-1)³+6*(-1)²+11*(-1)+8=-2 + 6 -11 +8=1
Значит точка касания (-1; 1)
уравнение касательной: у = у₀ + у' (x₀) (x - x₀)
y(-1)=1; y`(-1)=5
тогда уравнение касательной
у(кас) = 1 +5(x-(-1) = 1 +5x +5= 5x +6