Скобки не нужно раскрывать. Это все только усложнит. Здесь квадратное уравнение вида: ax²+bx+c=0, где a, b - коэффициенты при неизвестной х, с - свободный член. У тебя уравнение с параметром, где коэффициент b равен -(2a-1), а с=а²-а-2. Нужно дискриминант найти и дальше уже смотреть какие корни могут быть в уравнении в зависимости от значений параметра. Найдем дискриминант: D=(2a²-1)²-4*(a²-a-2)=4a²-4a+1-4a²+4a+8=1+8=9 При подсчете дискриминанта члены с параметром самоуничтожились, а это значит, что какое бы ни было значение а, дискриминант данного уравнения всегда будет равен 9. Найдем корни: х1=2a-1+√9/2=2a+2/2=a+1 x2=2a-1-√9/2=2a-4/2=a-2. Нужно узнать при каких а хотя бы один из корней больше двух: а+1>2 ⇔ a>1 a-2>2 ⇔ a>4. Таким образом, когда а принимает значения из промежутка (1;∞) хотя бы один из корней больше двух. А в промежутке а (1;4) больше двух только первый корень, в промежутке (4;∞) оба корня больше двух. Это так...я обобщила. Но ответ на поставленный вопрос: а∈(1;∞).
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z