2)Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на четыре интервала:
(-∞;-1),(-1;0,5),(0,5;4),(4;+∞)
3)Выяснить знак (плюс или минус) функции f (x) на самом правом интервале. Для этого достаточно подставить в f (x) любое число, которое будет правее всех отмеченных корней;
f(10) = (10+1)(2*10-1)(4-10)=11*19*(-6) <0 - знак минус
4)Отметить знаки на остальных интервалах. Для этого достаточно запомнить, что при переходе через каждый корень знак меняется.
После этого останется лишь выписать интервалы, которые нас интересуют. Они отмечены знаком «+», т.к. неравенство имеет вид
1 y=x² 1)x=2 y=4 2)x=-3/4 y=9/16 2 1)x²=9 x1=-3 U x2=3 (-3;9);(3;9) 2)x²=-x x²+x=0 x(x+1)=0 x1=0⇒y1=0 x2=-1⇒y2=1 (0;0);(-1;1) 3 y=x²,вершина в точке (0;0)-точка минимума у=0-наименьшее у(-4)=16 наибольшее (3)=9 х -4 -3 -2 -1 0 1 2 3 у 16 9 4 1 0 1 4 9 по этим точкам строишь график 4 1)х²=х Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=х по точкам (0;0) и (1;1) ответ (0;0);(1;1) 2)Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=2х-1 по точкам (0;-1) и (1;1) ответ (1;1) 5 y1=x² и у2=6х-5 Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=6х-5 по точкам (0;-5) и (1;1) ответ (5;0)4(1;1)
х ∈ (-∞;-1)∪(0,5;4)
Объяснение:
Метод интервалов(Этапы):
1) Решить уравнение f (x) = 0. Найти корни.
(х+1)(2х-1)(4-х)=0 х₁=-1; х₂=0,5; х₃=4
2)Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на четыре интервала:
(-∞;-1),(-1;0,5),(0,5;4),(4;+∞)
3)Выяснить знак (плюс или минус) функции f (x) на самом правом интервале. Для этого достаточно подставить в f (x) любое число, которое будет правее всех отмеченных корней;
f(10) = (10+1)(2*10-1)(4-10)=11*19*(-6) <0 - знак минус
4)Отметить знаки на остальных интервалах. Для этого достаточно запомнить, что при переходе через каждый корень знак меняется.
После этого останется лишь выписать интервалы, которые нас интересуют. Они отмечены знаком «+», т.к. неравенство имеет вид
f (x) > 0,