(4; -20; 20); (4; -12; 4)
Объяснение:
|f(1)| = |a*1^2+b*1+c| = |a+b+c| = 4
Это значит два варианта:
a+b+c = -4
a+b+c = 4
|f(2)| = |a*2^2+b*2+c| = |4a+2b+c| = 4
Это опять два варианта:
4a+2b+c = -4
4a+2b+c = 4
|f(3)| = |a*3^2+b*3+c| = |9a+3b+c| = 4
И тут два варианта:
9a+3b+c = -4
9a+3b+c = 4
Квадратная функция не может иметь одинаковое значение в 3 точках.
Поэтому варианты (-4;-4;-4) и (4;4;4) сразу отпадают.
И помним, что а > 0, поэтому ветви параболы направлены вверх.
Если вершина между 2 и 3, и в них обоих значение -4, то в 1 должно быть 4.
{ a+b+c = 4
{ 4a+2b+c = -4
{ 9a+3b+c = -4
Умножаем 1 уравнение на -4 и складываем со 2 уравнением.
Умножаем 1 уравнение на -9 и складываем с 3 уравнением.
{ a+b+c = 4
{ 0a-2b-3c = -20
{ 0a-6b-8c = -40
Умножаем 2 уравнение на -3 и складываем с 3 уравнением.
{ a+b+c = 4
{ 0a-2b-3c = -20
{ 0a+0b+c = 20
Получили с = 20. Подставляем во 2 уравнени.
-2b - 3*20 = -20; -2b = 40; b = -20
Подставляем в 1 уравнение
a - 20 + 20 = 4; a = 4
Решение: (4; -20; 20)
Если вершина между 2 и 3, и в них обоих 4, то в 1 должно быть больше 4. Не подходит.
Если вершина между 1 и 2, и в них обоих 4, то в 3 должно быть больше 4. Не подходит.
Если вершина между 1 и 2, и в них значение -4, то в точке 3 должно быть 4.
{ a+b+c = -4
{ 4a+2b+c = -4
{ 9a+3b+c = 4
Умножаем 1 уравнение на -4 и складываем со 2 уравнением.
Умножаем 1 уравнение на -9 и складываем с 3 уравнением.
{ a+b+c = -4
{ 0a-2b-3c = 12
{ 0a-6b-8c = 40
Умножаем 2 уравнение на -3 и складываем с 3 уравнением.
{ a+b+c=-4
{ 0a-2b-3c = 12
{ 0a+0b+c = 4
Получили с = 4. Подставляем во 2 уравнение
-2b - 3*4 = 12; -2b = 24; b = -12
Подставляем в 1 уравнение
a - 12 + 4 = -4; a = 12 - 4 - 4 = 4
Решение: (4; -12; 4)
Сначала определим значение а из второго уравнения, для чего подставим в него заданные корни (5;-3):
a * x + 3 * y = 11;
a * 5 + 3 * ( - 3) = 11;
a * 5 - 9 = 11;
а * 5 = 11 + 9;
а * 5 = 20;
а = 20/5;
а = 4.
Теперь можно записать заданную систему в нормальном виде:
1) 5 * x + 2 * y = 12;
2) 4 * х + 3 * у = 11.
Умножим 1) на 3, а 2) на 2:
1_1) 15 * x + 6 * y = 36;
2_1) 8 * х + 6 * у = 22.
Теперь вычтем из 1_1) уравнение 2_1):
15 * x + 6 * y - 8 * х - 6 * у = 36 - 22;
15 * x - 8 * х + 6 * y - 6 * у = 36 - 22;
7 * х = 14;
х = 14/7;
х = 2.
Выразим у из 1):
5 * x + 2 * y = 12;
2 * y = 12 - 5 * x;
у = 6 - 2,5 * х.
Подставим х = 2:
у = 6 - 2,5 * 2 = 1.
ответ: (2; 1).
Объяснение:
Сначала определим значение а из второго уравнения, для чего подставим в него заданные корни (5;-3):
a * x + 3 * y = 11;
a * 5 + 3 * ( - 3) = 11;
a * 5 - 9 = 11;
а * 5 = 11 + 9;
а * 5 = 20;
а = 20/5;
а = 4.
Теперь можно записать заданную систему в нормальном виде:
1) 5 * x + 2 * y = 12;
2) 4 * х + 3 * у = 11.
Умножим 1) на 3, а 2) на 2:
1_1) 15 * x + 6 * y = 36;
2_1) 8 * х + 6 * у = 22.
Теперь вычтем из 1_1) уравнение 2_1):
15 * x + 6 * y - 8 * х - 6 * у = 36 - 22;
15 * x - 8 * х + 6 * y - 6 * у = 36 - 22;
7 * х = 14;
х = 14/7;
х = 2.
Выразим у из 1):
5 * x + 2 * y = 12;
2 * y = 12 - 5 * x;
у = 6 - 2,5 * х.
Подставим х = 2:
у = 6 - 2,5 * 2 = 1.
ответ: (2; 1).
0,04
Объяснение:
1) Упростим выражение:
2) Находим значение выражения при а = 10, b = 3;