2. Найдите тангенс угла наклона касательной, проведенной к графику функции у = 2х^2 в его точке с абсциссой х0 = –1. Тангенс угла наклона равен производной в этой точке y' = (2x^2)' = 4x y(-1) = 4(-1) = -4
3. Найдите угловой коэффициент касательной, проведенной к графику функции у = 1/3х3 в его точке с абсциссой х = – 1. Угловой коэффициент касательной равен производной в этой точке y' = (1/3)x^3)' = x^2 y(-1) = (-1)^2 = 1 4. Функция f(x) возрастает на промежутках (– 5; –2) и (6;10) и убывает на промежутке (– 2;6). Укажите промежутки, на которых производная функции: f '(x) > 0; f '(x) < 0. f '(x) > 0 на промежутках (-5;-2) и (6;10) ; f '(x) < 0. на промежутке (-2;6)
11sin^2 a + 9cos^2 a + 8sin^4 a + 2cos^4 a = = 9sin^2 a + 9cos^2 a + 2sin^2 a + 6sin^4 a + 2(sin^4 a + 2cos^4 a) = (*) Заметим, что 1) 9sin^2 a + 9cos^2 a = 9(sin^2 a + cos^2 a) = 9 2) sin^4 a + cos^4 a = sin^4 a + 2sin^2 a*cos^2 a + cos^4 a - 2sin^2 a*cos^2 a = = (sin^2 a + cos^2 a)^2 - 2sin^2 a*cos^2 a = 1 - 1/2*(4sin^2 a*cos^2 a) Подставляем (*) = 9 + 2sin^2 a + 6sin^4 a + 2 - 4sin^2 a*cos^2 a = = 11 + 4sin^2 a - 2sin^2 a + 6sin^4 a - 4sin^2 a*cos^2 a = = 11 - 2sin^2 a + 6sin^4 a + 4sin^2 a*(1 - cos^2 a) = = 11 - 2sin^2 a + 6sin^4 a + 4sin^4 a = 11 - 2sin^2 a + 10sin^4 a = = 10(sin^4 a - 2*1/10*sin^2 a + 1/100) - 1/10 + 11 = = 10(sin^2 a - 1/10)^2 + 109/10 Минимальное значение квадрата равно 0, а всего выражения 109/10.
Объяснение:
окружег имеью две принципі это однокругловые и средниянын