В случае 12-угольника сумма равна 1800 градусов. Т. к. он правильный, то углы его равны 1800/12=150 градусов. ответ : 150°
2. Площадь параллелограмма равна произведению его основания (a) на высоту (h):
S = a ⋅ h
144 см² = а ⋅ 16 см
a = 9 см
3.s = a * b / 2
a - катет b - катет
a = 12
b^2 = 13^2 - 12^2
b^2 = 169 - 144
b^2 = 25
b = 5
S = 5 * 12 / 2
S = 30
4. Площадь ромба можно найти по формуле S = 0,5d₁d₂, где d₁ и d₂ - его диагонали.
Т.к. ромб - это параллелограмм, у которого все стороны равны, то он обладает всеми свойствами параллелограмма, а именно: диагонали ромба точкой пересечения делятся пополам. Значит, полусумма диагоналей равна 28 : 2 = 14 (см).
Свойство ромба: диагонали ромба перпендикулярны. Значит, при пересечении диагоналей ромба получаются 4 прямоугольных треугольника, у которых катеты - половины диагоналей, а гипотенуза - сторона ромба.
Рассмотрим один из прямоугольных треугольников и, применив теорему Пифагора, найдем его катеты.
Пусть один из катетов х см, тогда второй будет равен (14 - х) см. Т.к. сторона ромба равна 10 см, то составим и решим уравнение:
Если один из катетов равен 8 см, то второй будет равен 14 - 8 = 6 (см). Тогда диагонали ромба будут равны 16 см и 12 см, а площадь
S = 0,5 · 16 · 12 = 96 (см²)
Если один из катетов равен 6 см, то второй будет равен 14 - 6 = 8 (см). Тогда диагонали ромба будут равны 12 см и 16 см, а площадь
S = 0,5 · 12 · 16 = 96 (см²)
ответ: 96 см².
5.Обозначим трапецию АВСД. угол С=угол Д=90 градусов. так как в трапецию можно вписать окружность, то суммы противоположных сторон равны ВС+АД=СД+АВ.
проведём высоту ВК. Она разделила трапецию на прямоугольник ДСВК и прямоугольный треугольник АВК. Так как острый уголА = 45 градусов, то второй острый угол АВК = 90-45=45 градусов, значит треугольник равнобедренный, ВК=АК.
Пусть АК=х тогда и ВК=х, по т. Пифагора х²+х²=(12√2)², 2х²=144·2, х²=144, х=12, АК=12 см, ВК=12 см, тогда и СД=12 см.S(ABCD)=1/2·(АД+ВС)·ВК=1/2·(12+12√2)·12=72·(1+√2)
Дана функция у = (-1/3)x^3+x^2. 1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет. 2-Выяснить является ли чётной или нечётной. Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x). Итак, проверяем: f(-x) = (-1/3)x³ + x² = (1/3)x³ + x² - Нет -f(-x) = -((-1/3)x³ + x²) = -((1/3)x³ + x²) = -(1/3)x³ - x² - Нет, значит, функция не является ни чётной, ни нечётной. 3-определить точки пересечения функции с координатными осями . График функции пересекает ось X при f = 0 значит надо решить уравнение: (-1/3)x³+ x² = 0. -x³ + 3x² = 0. -x²(x-3) = 0. Имеем 2 корня: х = 0 и х = 3. График пересекает ось Y, когда x равняется 0: подставляем x = 0 в y = (-1/3)x^3 +x^2. y = (-1/3)0³+0² = 0. Точка: (0, 0) 4-найти критические точки функции. Находим производную и приравниваем её нулю: y' = -x²+2x = -x(x-2). Имеем 2 критические точки: х = 0 и х = 2. 5-определить промежутки монотонности (возрастания,убывания). Исследуем поведение производной вблизи критических точек. х = -0.5 0 0.5 1.5 2 2.5 y'=-x^2+2x -1.25 0 0.75 0.75 0 -1.25 Где производная отрицательна - функция убывает, где положительна - функция возрастает. Возрастает на промежутке [0, 2] Убывает на промежутках (-oo, 0] U [2, oo) 6-определить точки экстремума. Они уже найдены: это 2 критические точки: х = 0 и х = 2. Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции. Минимум функции в точке: x = 0, Максимум функции в точке: х = 2. 7 -определить максимальное и минимальное значение функции. Значения функции в экстремальных точках: х = 2, у = (-1/3)*2³+2² = -8/3 + 4 = 4/3, х = 0, у = 0. 8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба. Найдем точки перегибов, для этого надо решить уравнение d2/dx2f(x)=0(вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции, d2/dx2f(x)= -2х + 2 =-2(x−1)=0 Решаем это уравнение Корни этого ур-ния x1=1 Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках (-oo, 1] Выпуклая на промежутках [1, oo)
1. Сумма углов n-угольника равна 180°(n-2).
В случае 12-угольника сумма равна 1800 градусов. Т. к. он правильный, то углы его равны 1800/12=150 градусов. ответ : 150°
2. Площадь параллелограмма равна произведению его основания (a) на высоту (h):
S = a ⋅ h
144 см² = а ⋅ 16 см
a = 9 см
3.s = a * b / 2
a - катет b - катет
a = 12
b^2 = 13^2 - 12^2
b^2 = 169 - 144
b^2 = 25
b = 5
S = 5 * 12 / 2
S = 30
4. Площадь ромба можно найти по формуле S = 0,5d₁d₂, где d₁ и d₂ - его диагонали.
Т.к. ромб - это параллелограмм, у которого все стороны равны, то он обладает всеми свойствами параллелограмма, а именно: диагонали ромба точкой пересечения делятся пополам. Значит, полусумма диагоналей равна 28 : 2 = 14 (см).
Свойство ромба: диагонали ромба перпендикулярны. Значит, при пересечении диагоналей ромба получаются 4 прямоугольных треугольника, у которых катеты - половины диагоналей, а гипотенуза - сторона ромба.
Рассмотрим один из прямоугольных треугольников и, применив теорему Пифагора, найдем его катеты.
Пусть один из катетов х см, тогда второй будет равен (14 - х) см. Т.к. сторона ромба равна 10 см, то составим и решим уравнение:
х² + (14 - х)² = 10²,
х² + 196 - 28х + х² - 100 = 0,
2х² - 28х + 96 = 0,
х² - 14х + 48 = 0.
D = (-14)² - 4 · 1 · 48 = 196 - 192 = 4; √4 = 2
х₁ = (14 + 2)/(2 · 1) = 16/2 = 8, х₂ = (14 - 2)/(2 · 1) = 12/2 = 6
Если один из катетов равен 8 см, то второй будет равен 14 - 8 = 6 (см). Тогда диагонали ромба будут равны 16 см и 12 см, а площадь
S = 0,5 · 16 · 12 = 96 (см²)
Если один из катетов равен 6 см, то второй будет равен 14 - 6 = 8 (см). Тогда диагонали ромба будут равны 12 см и 16 см, а площадь
S = 0,5 · 12 · 16 = 96 (см²)
ответ: 96 см².
5.Обозначим трапецию АВСД. угол С=угол Д=90 градусов. так как в трапецию можно вписать окружность, то суммы противоположных сторон равны ВС+АД=СД+АВ.
проведём высоту ВК. Она разделила трапецию на прямоугольник ДСВК и прямоугольный треугольник АВК. Так как острый уголА = 45 градусов, то второй острый угол АВК = 90-45=45 градусов, значит треугольник равнобедренный, ВК=АК.
Пусть АК=х тогда и ВК=х, по т. Пифагора х²+х²=(12√2)², 2х²=144·2, х²=144, х=12, АК=12 см, ВК=12 см, тогда и СД=12 см.S(ABCD)=1/2·(АД+ВС)·ВК=1/2·(12+12√2)·12=72·(1+√2)