По формуле Бернулли определяем вероятности для первого и второго событий:
Количество независимых испытаний n = 20; вероятности событий выпадения как орла так и решки равны q = p = 1/2.
Орел выпадает ровно 20 раз (k = 20)
Вероятность P1 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(20! * 2!) * (1/2)^20 * (1/2)^2 = 56/2 * (1/2)^8 = 7/64
Орел выпадает ровно 1 раз (k = 1)
Вероятность P2 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(1! * 7!) * (1/2)^1 * (1/2)^7 = 8 * (1/2)^8 = 2/64
Вероятность наступления события P1 больше P2 в P1/P2 = (7/64) / (2/64) = 3.5 раза.
Если смешать два этих раствора, получим раствор, который содержит 72 % кислоты (72:100=0,72).
Значит, 100х+20у=0,72*(100+20)
100х+20у=0,72*120
100х+20у=86,4 (1 уравнение).
Если же смешать равные массы растворов, то получим раствор, который содержит 78 % кислоты (78%:100%=0,78). Масса второго равна 20 кг, значит и массу первого необходимо взять 20 кг. 20х+20у=0,78*(20+20)
20х+20у=0,78*40
20х+20у=31,2 (2 уравнение)
Решим систему неравенств (методом сложения):
{100х+20у=86,4
{20х+20у=31,2 (*-1)
{100х+20у=86,4
+{-20x-20y=-31,2
=(100х+(-20х))+(20у+(-20у))=86,4+(-31,2)
80х=55,2
х=55,2:80
х=0,69=69% (масса кислоты, содержащаяся в первом сосуде – 100 кг)
0,69*100 кг=69 кг кислоты содержится в первом сосуде
ответ: масса кислоты, содержащаяся в первом сосуде равна 69 кг.