М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Побудуйте графік лінійних функцій

👇
Ответ:
Vasulivna123
Vasulivna123
06.11.2021

ответ:у=5•1+1=6

Объяснение:

у=6; х=1

4,5(40 оценок)
Открыть все ответы
Ответ:
dicsi1
dicsi1
06.11.2021
Пусть печенья купили х кг, а конфет - у кг, тогда можно записать систему уравнений:
\left \{ {{x+y=38} \atop {50x+60y=2080}} \right.
В первом уравнении показали что сумма печенья и конфет равна 38 кг, а во втором показали что сумма стоимости конфет и стоимости печенья равна 2080 руб. (стоимость печенья 50*х, а стоимость конфет 60*у). Решаем систему уравнений, выразим х через у и подставим во второе уравнение;
\left \{ {{x=38-y} \atop {50*(38-y)+60y=2080}} \right.
\left \{ {{x=38-y} \atop {1900-50y+60y=2080}} \right.
\left \{ {{x=38-y} \atop {1900+10y=2080}} \right.
\left \{ {{x=38-y} \atop {10y=2080-1900}} \right.
\left \{ {{x=38-y} \atop {10y=180}} \right.
\left \{ {{x=38-y} \atop {y=18}} \right.
Нашли сколько купили конфет - 18 кг. Теперь найдём сколько купили печенья:
x+18=38
x=38-18
x=20 (кг)

ответ: печенья купили 20 кг, а конфет - 18 кг.
4,5(89 оценок)
Ответ:
andrognew2018
andrognew2018
06.11.2021
Решение уравнения будем искать в виде y=e^{\beta\cdot x}.

Составим характеристическое уравнение.
 \beta^2-3\beta=0\\ \beta_1=0;\\ \beta_2=3;

Фундаментальную систему решений функций:
y_1=1\\ y_2=e^{3x}

Общее решение однородного уравнения:
 y_{*}=y_1+y_2=C_1\cdot e^{3x}+C_2

Теперь рассмотрим прафую часть диф. уравнения:
 f(x)=3e^{3x}

найдем частные решения.
Правая часть имеет вид уравнения
P(x)=e^{\alpha x}(R(x)\cos(\gamma x)+L(x)\sin(\gamma x)), где R(x) и S(x) - полиномы, которое имеет частное решение.

y=x^ze^{\alpha x}(P(x)\cos(\gamma x)+S(x)\sin (\gamma x)), где z -кратность корня \alpha+\gamma i

У нас R(x) = 3; L(x) = 0; \alpha=3;\,\, \gamma =0

Число \alpha + \gamma i=3 является корнем характеристического уравнения кратности z=1

Тогда уравнение имеет частное решение вида:
 y=x(Ae^{3x})
Находим 2 производные, получим
y'=3Ax3e^{3x}+Ae^{3x}\\ y''=3Ae^{3x}(3x+2)

И подставим эти производные в исходное диф. уравнения
y''-3y'=3e^{3x}\\ 3Ae^{3x}=3e^{3x}\\ A=1

Частное решение имеет вид: y_*=xe^{3x}

Общее решение диф. уравнения:
  y=C_1e^{3x}+C_2+xe^{3x}
4,6(10 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ