Решение: Данное задание можно представить в виде прямоугольного треугольника АВС. Обозначим высоту фонарного столба за АВ, а рост человека, делящий треугольник на два прямоугольных треугольника, например за ДЕ. Получим два подобных треугольника АВС и ДЕС. Запишем пропорциональности их сторон: АВ/ДЕ=АС/ДС Нам известны АВ равно 6 (м) ДЕ-обозначим за х (это рост человека) АС=АД+ДС=2,8+1,2=4 (м) АД -это расстояние человека от столба; ДС-нам тоже известна, она равна 1,2 (м) Поставим данные в пропорцию и получим: 6/х=4/1,2 х=6*/1,2/4=1,8(м) -это рост человека.
Чтобы найти интервалы монотонности, нужно найти производную. Производная суммы равны сумме производных. f'(x)=-3x^2-4x Найдем нули производной -3x^2-4x=0 -x(3x+4)=0 x=0 x =-4/3 При x>0 f'(x) < 0 => f(x) убывает на интервале (0;+бесконечность) При -4/3<x<0 f'(x) f'(x) > 0 => f(x) возрастает на интервале (-4/3;0) При x<-4/3 f'(x) < 0 => f(x) убывает на интервале (0;+бесконечность) x=-4/3 - точка минимума(производная меняет знак с - на + при переходе через эту точку) x=0 - точка максимума (производная меняет знак с + на - при переходе через эту точку)
1
Объяснение:
t5*t3:t8=t
t11*t8:t19=t
а t разделить на t будет один