М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
оксана755
оксана755
13.03.2021 13:24 •  Алгебра

Вычислить несобственный интеграл или доказать его расходимость \int\limits^\frac{1}{3}_0 {\frac{e^{3+\frac{1}{x} } }{x^{2} } } \, dx

👇
Ответ:
ddosanov777
ddosanov777
13.03.2021

Объяснение:

Решение смотри в файле/


Вычислить несобственный интеграл или доказать его расходимость [tex]\int\limits^\frac{1}{3}_0 {\frac
Вычислить несобственный интеграл или доказать его расходимость [tex]\int\limits^\frac{1}{3}_0 {\frac
4,7(70 оценок)
Открыть все ответы
Ответ:
Nikaslavnikova
Nikaslavnikova
13.03.2021
(6x-7)²-(5x+7)(5x-7)=36x²-84x+49-(25x²-49)=36x²-84x+49-25x²+49=11x²-84x+98

y(y+6)²-(y+1)(y-6)²=y(y²+12y+36)-(y+1)(y²+12y+36)=
=y³+12y²+36y-(y³+12y²+36y+y²+12y+36)=y³+12y²+36y-y³-12y²-36y-y²-12y-36=
=-y²-12y-36=-(y²+12y+36)=-(y+6)²

100-140a+49a²=(10-7a)²

x⁴+18x²y+81y²=(x²+9y)²

(x²-4x)²-16 =(x²-4x)²-4²=((x²-4x)+4)((x²-4x)-4)=(x²-4x+4)(x²-4x-4)

9b²-25c²-3b+5c=(9b²-25c²)+(-3b+5c)=(3b+5c)(3b-5c)-(3b-5c)=
=(3b-5c)(3b+5c-1)

\frac{ x^{2} -y^2}{( x^{2} -xy)^2} = \frac{(x+y)(x-y)}{(x(x-y))^2} =\frac{(x+y)(x-y)}{x^2(x-y)^2} = \frac{x+y}{x^2(x-y)} = \frac{x+y}{x^3-x^2y}

(a-3b)²=a²-9b²
a²-3ab+9b²=a²-9b²
a²-6ab+9b²-a²+9b²=0
-6ab+18b²=0
-6b(a-3b)=0
a-3b=0
a=3b
значит при любых значениях удовлетворяющих а=3b,  исходное равенство будет верным
4,5(51 оценок)
Ответ:

Воспользуемся формулой |x| = \sqrt{x^{2} } :

\sqrt{(2^{x} -2)^{2} } =\sqrt{a^{2} } \\

Возведем обе части в квадрат:

(\sqrt{(2^{x} -2)^{2} })^{2} =(\sqrt{a^{2} })^{2} \\ (2^{x} -2)^{2} =a^{2} \\(2^{x} -2)^{2}-a^{2} =0\\(2^{x} -2-a)(2^{x} -2+a) = 0\\

Рассмотрим 3 случая :

1.

2^{x} -2-a = 0\\ 2^{x} -2+a \neq 0\\

----------------------

2^{x}= 2+a

Мы знаем, что любое число(кроме 0) в любой степени больше нуля, то есть 2+а > 0 => a>-2

2^{x} \neq 2-a\\

Так же 2-а уже должно быть меньше или равно нулю:

2-a ≤ 0 => a ≥ 2

Найдем пересечение => a ≥ 2

2.

По тому же принципу :

2^{x} -2-a \neq 0 = 2^{x} \neq 2+a = a\leq -2\\2^{x} -2+a=0 = 2^{x}=2-a= a< 2

Найдем пересечение => a ≤-2

3.

2^{x} -2-a=2^{x} -2+a\\-a = a\\2a = 0\\a = 0

----------------------------------------------------------------------

Объединим три ответа => a Є (-∞ ; -2] U [2 ; +∞)

ответ : a Є (-∞ ; -2] U [2 ; +∞) U {0}

P.S это одно из возможных решений, возможно вы найдете и по проще)

4,8(11 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ