Ттебе как надо решать на падобии: пример 2. решить неравенстворешение. точки и (корни выражений, стоящих под модулем) разбивают всю числовую ось на три интервала, на каждом из которых следует раскрыть модули.1) при выполняется , и неравенство имеет вид , то есть . в этом случае ответ .2) при выполняется , неравенство имеет вид , то есть . это неравенство верно при любых значениях переменной , и, с учетом того, что мы решаем его на множестве , получаем ответ во втором случае .3) при выполняется , неравенство преобразуется к , и решение в этом случае . общее решение неравенства объединение трех полученных ответов.ответ. .
3x(x+4) ≤0 (x-2) решим методом интервалов значения х обращающие числитель и знаменатель в 0 это х={-4, 0, 2} рассмотрим знак выражения при х принадлежащих интервалам 1) при х∈(-∞,-4) возьмем какое-либо значение из этого интервала например -5 и вычислим значение выражения 3(-5)(-5+4)/(-5-2)=-15/7<0 знак - 2) при х∈(-4, 0) например х=-2 , 3(-2)(-2+4)/(-2-2)=12/2>0 знак + 3) при х∈(0,2) например х=1 , 3*5/(1-2)=-15<0 знак - 4) при х∈(2,+∞) например х=3 3*3(3+7)/(3-2)>0 знак + выберем те интервалы у которых знак - значения которые обращают числитель в 0 включим, которые обращают знаменатель в 0 исключим х∈ (-∞;-4]U[0;2)