Два рільники, Іван і Григорій, можуть зорати поле за 6 годин. За скільки годин Григорійможе зорати все поле, якщо Іван всю роботу може закінчити на 5 годин раніше, ніж Григорій?
Вероятность Р равна отношению числа благоприятных событий m к числу всех возможных исходов n: Р=m÷n По условиям задачи для экзамена подготовили билеты с номерами от 1 до 50. Однозначные номера: 1, 2, 3, 4, 5, 6, 7, 8, 9. Всего 9. Значит, число благоприятных исходов события, при котором взятый учеником билет имеет однозначный номер m=9. Число всех возможных исходов n=50. Тогда вероятность равна: Р=m÷n=9÷50= 0,18 ответ: вероятность того, что наугад взятый учеником билет имеет однозначный номер равна 0,18 (18%).
Пусть A - объём работы, которую предстоит выполнить. Пусть t ч - время, за которое может выполнить эту работу один фотограф и t+2 ч - второй фотограф. Тогда за 1 час один фотограф выполняет A/t часть работы, а другой фотограф - A/(t+2) часть работы. Работая же вместе, они за 1 час выполняют A/t+A/(t+2) часть работы. По условию, [A/t+A/(t+2)]*15/8=A. Сокращая на A, приходим к уравнению [1/t+1/(t+2)]*15/8=1, которое приводится к квадратному уравнению 4*t²-7*t-15=0. Это уравнение имеет решения t1=3 ч и t2=-1,25 ч. Но так как t>0, то t=3 ч. Тогда t+2=5 ч. ответ: 3 ч и 5 ч.
По условиям задачи для экзамена подготовили билеты с номерами от 1 до 50.
Однозначные номера: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Всего 9. Значит, число благоприятных исходов события, при котором взятый учеником билет имеет однозначный номер m=9.
Число всех возможных исходов n=50.
Тогда вероятность равна: Р=m÷n=9÷50= 0,18
ответ: вероятность того, что наугад взятый учеником билет имеет однозначный номер равна 0,18 (18%).