Расстояние от А до Б обозначим за С, скорость теплохода - за а, а скорость течения реки = в. ТОгда получим два уравнения: С/(а+в) = 2 и С/(а-в) = 3. Вырази "в" в этих уравнениях: а+в = С/2 и а-в = С/3. в= С/2-а и в = а-С/3 получаем, что С/2-а = а-С/3 тогда С/2+С/3 = а+а или 2а = 5С/6. а= 5С/12. Нашли а, теперь попробуем выразить в (из первого уравнения): в= С/2 - 5С/12 или в= 6С/12 - 5С/12 = С/12. Значить в (скорость течения реки) = С/12. Поскольку плот плывет только по течению (своей собственной скорости не имеет), то время его движения можно узнать: С:в = С : C/12 = 12/ Значит, за 12 дней
Примем за x -количество метров ткани в первом куске, за y- количество ткани во втором куске, Можем записать уравнение: (x+y)·140=9100 x-y -количество метров ткани в первом куске после продажи, y-x/2 - количество метров ткани во втором куске после продажи, (x-y) больше y- x/2 на 10 метров: Запишем уравнение: (x-y)-(y-x/2)=10: Записали два уравнения и у нас два неизвестных, решим систему уравнений: (x+y)·140=9100 (x-y)-(y-x/2)=10
x+y=65 x-y-y+x/2=10 ·2
x+y=65 2x-4y+x=20
x+y=65 ·3 3x-4y=20
3x+3y=195 3x-4y=20 вычтем из первого уравнения второе 7y=175 y=25, 25 метров ткани во втором куске. x+y=65, y=65-25=40, 40 метров ткани в первом куске.
С/(а+в) = 2 и С/(а-в) = 3. Вырази "в" в этих уравнениях: а+в = С/2 и а-в = С/3.
в= С/2-а и в = а-С/3 получаем, что С/2-а = а-С/3 тогда С/2+С/3 = а+а или 2а = 5С/6. а= 5С/12. Нашли а, теперь попробуем выразить в (из первого уравнения): в= С/2 - 5С/12 или в= 6С/12 - 5С/12 = С/12.
Значить в (скорость течения реки) = С/12.
Поскольку плот плывет только по течению (своей собственной скорости не имеет), то время его движения можно узнать: С:в = С : C/12 = 12/
Значит, за 12 дней