Метод алгебраического сложения заключается в том, чтобы вычитая или же суммируя уравнения системы получить 1 уравнение с 1 неизвестным. Для этого в данном примере можно умножить первое уравнение на 3 с обеих сторон (заметим, что при этом значения неизвестных не изменятся, то есть полученное уравнение будет эквивалентно исходному). После этой операции система будет иметь такой вид:
Теперь, если отнимем от первого уравнения системы второе, то получим следующее: Как видите, мы получили уравнение с 1 неизвестным. Отсюда получаем , а х находим, подставив y в любое из уравнений системы. Удобнее в 1ое в данном случае. Получаем x + 4 * 5 = 9, откуда x = -11. ответ: x = -11; y = 5.
Пусть х (км/ч) - скорость одного пешехода; 3х (км) - расстояние, которое он до встречи за 3 часа у (км/ч) - скорость другого пешехода; 3у (км) - расстояние, которое он до встречи за 3 часа. Составим систему уравнений по условию задачи и решим её методом алгебраического сложения: 3х + 3у = 30 3х - 3у = 6
6х = 36 х = 36 : 6 х = 6 (км/ч) - скорость одного пешехода
Подставим значение х в любое уравнение системы 3 * 6 + 3у = 30 3 * 6 - 3у = 6 18 + 3у = 30 18 - 3у = 6 3у = 30 - 18 3у = 18 - 6 3у = 12 3у = 12 у = 12 : 3 у = 12 : 3 у = 4 у = 4 (км/ч) - скорость другого пешехода Р.S. Скорость второго пешехода (у) можно найти ещё и так: 30 : 3 = 10 (км/ч) - скорость сближения двух пешеходов 10 - 6 = 4 (км/ч) - скорость второго пешехода. Вiдповiдь: 6 км/год i 4 км/год.
1697,2729 вот так!! там вместо d стаывиш -0.13