ответ: выделен жирным шрифтом.
a) Sₙ (cумма n первых членов арифметической прогрессии) = (( a₁ + aₙ) · n) ÷ 2
Значит S₅ = (( a₁ + a₅) · 5) ÷ 2
Осталось найти a₁ и a₅
aₙ = a₁ + d · ( n – 1 )
Значит:
a₂ = a₁ + d · (2 - 1) И a₅ = a₁ + d · (2 - 1)
a₁ = a₂ - d = 3 - 4 = -1 a₅ = -1 + 4 · 4 = 15
Подставляем эти значения в формулу:
S₅ = (( -1 + 15) · 5) ÷ 2 = (14 · 5) ÷ 2 = 7 · 5 = 35
ответ: 35
b) Sₙ (cумма n первых членов геометрической прогрессии) = (b₁ · (qⁿ - 1)) ÷ (q - 1)
Значит S₅ = (b₁ · (q⁵ - 1)) ÷ (q - 1)
Осталось найти b₁
bₙ = b₁ · q⁽ⁿ⁻¹⁾
b₂ = b₁ · q
b₁ = b₂ ÷ q = 3 ÷ 1/3 = 9
Подставляем это значение в формулу:
S₅ = (9 · ((1/3)⁵ - 1)) ÷ ((1/3) - 1) = 13 целых и 4/9 (лучше записывать это дробью, т.к. в десятичном виде здесь будет бесконечное кол-во чисел после запятой - 13.4444444...)
ответ: 13 целых и 4/9
ответ: 20 км/час.
Объяснение:
Велосипедист выехал с некоторой скоростью из пункта А в пункт В, расстояние между которыми 60 км Прибыв в пункт в, он повернул назад и ехал с той же скоростью, а через час сделал на 20 мин. После этого велосипедист увеличил скоростью на 4 км/ч. Найдите начальную скорость велосипедиста, если расстояние от В до А он проехал за то же время, что и от А до В.
Решение.
Пусть х км/час - начальная скорость велосипедиста. Тогда
путь от А до В он проехал за t1=60/x часов.
На обратном пути он проехал за 1 час х км, 20 минут(1/3 часа) отдыхал и оставшийся путь проехал со скоростью x+4 км/час за время (60-x)/(x+4) часа. Таким образом на обратный путь он затратил t2=1+1/3+ (60-x)/(x+4) часа.
По условию t1=t2. Тогда
60/x= 4/3+ (60-x)/(x+4);
3*60(x+4)=4*x(x+4)+3*x(60-x);
180x+720=4x²+16x+180x-3x²;
x²+16x-720=0;
По т. Виета
x1+x2=-16; x1*x2=-720;
x1=20; x2=-36 - не соответствует условию.
x=20 км/час - первоначальная скорость велосипедиста.